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The first principle is that you m
ust

not fool yourself -- and you are the
easiest person to fool.

- Richard Feynm
an



• Brief introduction to the RiskCalc default model
• Discussion of validation and backtesting in finance
• Differences between validating market- and credit-related

models
• A validation approach for sparse data sets
• Examples of problems that arise from violating the approach
• Conclusion
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The corporate credit problem
• What is the probability of “default” (PD) within a specified period of time?
• Uses of PD’s

• Regulators
• Basel, National bank regulators

• Securitization
• Collateralized Loan Obligations

• Credit Process
• Decisioning (yes/no)
• Monitoring (work-out, remedial action)
• Provisioning
• Pricing
• Incentive compensation

• Related problems
• Recovery (loss given default)
• Correlation of default rates and arrival times
• State transiton



• Transform
– Ratios transformed from unwieldy broad distributions to

more uniform and predictive variants
– Micro-modeling used to capture useful aspects of behavior

and to decompose problem

• Model
– Transformed variables weighted statistically to produce

default scoring model

• Map
– Model output (score) converted to PD by non-parametrically

mapping into historical population default estimates



The components of Moody’s modeling
approach

• Structural model (Merton variant)
– Distance to distress

• Rating information (where available)
– Moody’s rating or quantitative rating estimate

• Financial statement information
– Leverage, Liquidity, Size, Profitability, etc.

• Non-linear statistical regression
– Simple neural network

• Mapping result to empirical probability of default (PD) and adjusting
for prior probabilites

• Extensive validation
– Out-of-sample / out-of-time (walk forward analysis)
– Multidimensional metrics



Distance to Distress: Equity as a Call Option
1. Calculate the firm’s obligations (CL, LTD)
2. Use equity information to estimate:

• a) market value of the firm’s assets (MVA)
• b) volatility of assets

    This is done with a variant of the Merton model:
 Market Equity   = Present Value (Residual Value of the Firm)
 Stock Volatility =  Leveraged Volatility of Assets

3. Calculate
Distance to Distress = (MVA -(1/2 LTD + CL))/(volatility x MVA)



Mapping score to PD
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Univariate Performance of Variables
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Non-Linear Relationships:
ROA vs. Distance to Distress
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Heuristic overview of the model
Risk Components: Model Variables: Variable Weights:

Default Risk
Score

= f(Σwj  variablej)
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Moody’s view of the spectrum of validation

Data Poor                                                                                    Data Rich
Development                                                                           Certification

Anecdotal cases

Validating on small samples 
of  “training” cases

“number right”

Validating on 
out-of-sample data

“number right”

Validating on 
out-of-sample  
out-of-time data
“number right”

Bootstrapping
out-of-sample 

out-of-time data
higher order statistics

Bootstrapping
out-of-sample 

out-of-time data
“number right”

Bootstrapping
out-of-sample 

out-of-time data
higher order statistics

w/ cost function

Moody’s Q is currently here



“…the area of validation will prove to be a key
challenge for banking institutions in the
foreseeable future.”

“Credit Risk Modeling Practices and Applications,”
Basle Committee on Banking and Supervision, Basle,
April,1999,  p. 50.



The components of our current
approach to validation

• How to measure and calculate performance
statistics
– How to sample available data
– How to use the data to achieve robust statistics

• What types of statistics to measure
– Simple (hits vs. misses)
– Measures of goodness based on geometry
– Measures of information content and association

based on entropy
– Other measures (forthcoming)



Validation in Finance

• Backtesting dominates market research
– Identify interesting relationship
– Evaluate the (risk-adjusted) “profitability” of the relationship

through simulated trading on historical data
• Backtesting requires long time series of relatively

high frequency
• Backtesting is often not appropriate for lower

frequency data or rare/long term events since not
enough data exists to both build a model and test it

• If more data are saved for testing, models tend to be mis-
specified

• If more data are used to parameterize a model, tests loose
power:  too few examples exist for meaningful inferences
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From: Dhar, V. and Stein, R., “Finding Robust and Usable Models with Data Mining:
Examples from Finance,” PCAI, Sept., 1998.
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Unlike in the trading problem, corporate credit
often involves separating “goods” from “bads”

Distribution of Populations
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But the distribution of “interesting” cases for the
default problem is sparse

• Data Set
– Moody’s Default and Ratings databases, Compustat, IDC
– over 14,000 U.S. non-financial corporations
– over  1,400 defaults
– 1980 through 1999

• Firm years
– Model Fitting: ~ 100,000
– Validation: ~   65,000

• Population default rate:
– Actual: 1.6%
– Sample: 1.1%



Standard Errors and Sample Size
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• Walk forward and K-fold methods
– Training sample versus validation sample
– Out-of-sample and out-of-time validation

• Empirical validation versus comparable tools
– Power statistics are sample biased
– Performance can be truly assessed relative to a benchmark
– Muti-dimensional performance measures

• Use of large datasets
– Documented performance on large out-of-sample datasets
– Testing that the model is not “overfitted”
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Number of Defaults Historically for Model
Development

Year Defaults Non-Defaults
Fitzpatrick (32) 19 19
Beaver (67) 79 79
Altman (68) 33 33
Lev (71) 37 37
Wilcox (71) 52 52
Deakin (72) 32 32
Edmister (72) 42 42
Blum (74) 115 115
Taffler (74) 23 45
Libby (75) 30 30
Diamond (76) 75 75
Altman, Haldeman and Narayanan (77) 53 58
Marais (79) 38 53
Dambolena and Khoury (80) 23 23
Ohlson (80) 105 2,000
Taffler (82, 83) 46 46
El Hennawy and Morris (83a) 22 22
Moyer (84) 35 35
Taffler (84) 22 49
Zmijewski (84) 40 800
Zavgren (85) 45 45
Casey and Bartczak (85) 60 230
Peel and Peel (88) 35 44
Barniv and Raveh (89) 58 142
Boothe and Hutchninson (89) 33 33
Gupta, Rao, and Bagchi (90) 60 60
Kease and McGuiness (90) 43 43
Keasey, McGuiness and Short (90) 40 40
Shumway (96) 300 1,822
Moody’s RiskCalc Public Firm (00) 1,406 13,041
Moody’s RiskCalc Private Firm                     (00)         1,621             23,089
Median 40 45
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Assets
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Size Bias Makes Model Estimation, Testing, Difficult
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Selected CAP curves
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Relative Model Performance
Selected CAP curves
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• RiskCalc documents Available at  www.moodysrms.com to
download Adobe Acrobat files
– Navigate to “research”

• Some validation readings
– Burnham, K.P. and Anderson, D.R., Model Selection and Inference, New York, Springer,

1998.

– Dhar, V. and Stein, R.,“Finding Robust and Usable Models with Data Mining: Examples
from Finance,” PCAI, Sept., 1998.

– Hoadley, B. and Oliver, R. M., (1998),  “Business measures of scorecard benefit,” IMI
Journal of Mathematics Applied in Business & Industry, 9, pp. 55-64.

– Sobehart, J., Keenan, S., Stein, R. Benchmarking quantitative default risk models: A
Validation Methodology, Moody’s Special Comment, March 2000.

– Provost, F. and Fawcett, T.,“Analysis and Visualization of Classifier Performance:
Comparison Under Imprecise Class and Cost Distributions,” Proceedings Third
International Conference on KDD, Newport Beach, CA, August 1997.



• We have found that validation can be done even with sparse data but is
difficult particularly with sparse data

• It is useful to carefully design validation experiments that test a model in
simulated real-world environments controlling for time and universe

• Meaningful benchmarks (not straw-men) are usually necessary for
reference

• Many validation tests are sensitive to the exact sample chosen:
observed performance differences may be due to sampling issues
particularly with rare events

• There is little that we can do to increase the power in sparse data for
validation.  The best we can do is to acknowledge limitations and
understand bounds
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