Sequential Supervised Learning

Many Application Problems Require Sequential Learning

Part-of-speech Tagging
 Information Extraction from the Web
 Text-to-Speech Mapping

Part-of-Speech Tagging

Given an English sentence, can we assign a part of speech to each word?

"Do you want fries with that?"
 <verb pron verb noun prep pron>

Information Extraction from the Web

<dl><dt>Srinivasan Seshan (Carnegie Mellon University) <dt><i>Making Virtual Worlds Real</i><dt>Tuesday, June 4, 2002<dd>2:00 PM , 322 Sieg<dd>Research Seminar

* * * name name * * affiliation affiliation affiliation * * * * title title title title * * * date date date date * time time * location location * event-type event-type

Text-to-Speech Mapping

"photograph" => /f-Ot@graf-/

Sequential Supervised Learning (SSL)

Given: A set of training examples of the form $(\mathbf{X}_i, \mathbf{Y}_i)$, where $\mathbf{X}_i = \langle x_{i,1}, \dots, x_{i,Ti} \rangle$ and $\mathbf{Y}_i = \langle y_{i,1}, \dots, y_{i,Ti} \rangle$ are sequences of length T_i

Find: A function f for predicting new sequences: Y = f(X).

Examples of Sequential Supervised Learning

Domain	Input X i	Output Y i
Part-of-speech Tagging	sequence of words	sequence of parts of speech
Information Extraction	sequence of tokens	sequence of field labels {name,}
Test-to-speech Mapping	sequence of letters	sequence phonemes

Two Kinds of Relationships

"Vertical" relationship between the x_t's and y_t's

 Example: "Friday" is usually a "date"

 "Horizontal" relationships among the y_t's

 Example: "name" is usually followed by "affiliation"

 SSL can (and should) exploit both kinds of information

Existing Methods

Hacks

- Sliding windows
- Recurrent sliding windows
- Hidden Markov models
 - joint distribution: P(X,Y)
- Conditional Random Fields
 - conditional distribution: P(Y|X)
- Discriminant Methods: HM-SVMs, MMMs, voted perceptrons

- discriminant function: f(Y; X)

Sliding Windows

Properties of Sliding Windows

- Converts SSL to ordinary supervised learning
- Only captures the relationship between (part of) X and y_t. Does not explicitly model relations among the y's

Assumes each window is independent

Recurrent Sliding Windows

Recurrent Sliding Windows

Key Idea: Include y_t as input feature when computing y_{t+1} .

- During training:
 - Use the correct value of y_t
 - Or train iteratively (especially recurrent neural networks)
- During evaluation:
 - Use the predicted value of y_t

Properties of Recurrent Sliding Windows

Captures relationship among the y's, but only in one direction! Results on text-to-speech:

Method	Direction	Words	Letters
sliding window	none	12.5%	69.6%
recurrent s. w.	left-right	17.0%	67.9%
recurrent s. w.	right-left	24.4%	74.2%

Hidden Markov Models

Generalization of Naïve Bayes to SSL

P(y₁)
P(y_t | y_{t-1}) assumed the same for all t
P(x_t | y_t) = P(x_{t,1} | y_t) · P(x_{t,2} | y_t) ··· P(x_{t,n},y_t) assumed the same for all t

Making Predictions with HMMs

Two possible goals:

 $-\operatorname{argmax}_{Y} P(Y|X)$

find the most likely <u>sequence</u> of labels Y given the input sequence X

 $- \operatorname{argmax}_{y_t} P(y_t | X)$ forall t

find the most likely label y_t at each time t given the entire input sequence X

Finding Most Likely Label Sequence: The Trellis

Every label sequence corresponds to a path through the trellis graph.

The probability of a label sequence is proportional to $P(y_1) \cdot P(x_1|y_1) \cdot P(y_2|y_1) \cdot P(x_2|y_2) \cdots P(y_T \mid y_{T-1}) \cdot P(x_T \mid y_T)$

Converting to Shortest Path Problem

$$\begin{split} & \max_{y_{1},...,y_{T}} \mathsf{P}(y_{1}) \cdot \mathsf{P}(x_{1}|y_{1}) \cdot \mathsf{P}(y_{2}|y_{1}) \cdot \mathsf{P}(x_{2}|y_{2}) \cdots \mathsf{P}(y_{T} \mid y_{T-1}) \cdot \mathsf{P}(x_{T} \mid y_{T}) = \\ & \min_{y_{1},...,y_{T}|} -\mathsf{log} \left[\mathsf{P}(y_{1}) \cdot \mathsf{P}(x_{1}|y_{1})\right] + -\mathsf{log} \left[\mathsf{P}(y_{2}|y_{1}) \cdot \mathsf{P}(x_{2}|y_{2})\right] + \cdots + -\mathsf{log} \left[\mathsf{P}(y_{T} \mid y_{T-1}) \cdot \mathsf{P}(x_{T} \mid y_{T})\right] \\ & \mathsf{P}(x_{T} \mid y_{T})\right] \\ & \mathsf{shortest path through graph. edge cost} = -\mathsf{log} \left[\mathsf{P}(y_{t}|y_{t-1}) \cdot \mathsf{P}(x_{t}|y_{t})\right] \end{split}$$

Step t of the Viterbi algorithm computes the possible successors of state y_{t-1} and computes the total path length for each edge

Each node y_t =k stores the cost μ of the shortest path that reaches it from s and the predecessor class y_{t-1} = k' that achieves this cost

$$k' = \operatorname{argmin}_{y_{t-1}} -\log \left[P(y_t \mid y_{t-1}) \cdot P(x_t \mid y_t) \right] + \mu(y_{t-1})$$

$$\mu(k) = \min_{y_{t-1}} -\log \left[P(y_t \mid y_{t-1}) \cdot P(x_t \mid y_t) \right] + \mu(y_{t-1})$$

Compute Successors...

Compute and store shortest incoming arc at each node

Compute successors

Compute and store shortest incoming arc at each node

Compute successors...

Compute and store shortest incoming edges

Compute successors (trivial)

Compute best edge into f

Now trace back along best incoming edges to recover the predicted Y sequence: "verb pronoun verb noun noun"

Finding the Most Likely Label at time t: $P(y_t | X)$

 $P(y_3=2 | X) = probability of reaching y_3=2 from the start * probability of getting from y_3=2 to the finish$

Finding the most likely class at each time t

goal: compute $P(y_t | \mathbf{x}_1, ..., \mathbf{x}_T)$ $\propto \sum_{y_{1:t-1}} \sum_{y_{t+1:T}} P(y_1) \cdot P(\mathbf{x}_1 | y_1) \cdot P(y_2 | y_1) \cdot P(\mathbf{x}_2 | y_2) \cdots P(y_T | y_{T-1}) \cdot P(\mathbf{x}_T | y_T)$

 $\propto \sum_{\boldsymbol{y}_{1:t-1}} \mathsf{P}(\boldsymbol{y}_1) \cdot \mathsf{P}(\boldsymbol{x}_1 | \boldsymbol{y}_1) \cdot \mathsf{P}(\boldsymbol{y}_2 | \boldsymbol{y}_1) \cdot \mathsf{P}(\boldsymbol{x}_2 | \boldsymbol{y}_2) \cdots \mathsf{P}(\boldsymbol{y}_t | \boldsymbol{y}_{t-1}) \cdot \mathsf{P}(\boldsymbol{x}_t \mid \boldsymbol{y}_t) \cdot \\ \sum_{\boldsymbol{y}_{t+1:T}} \mathsf{P}(\boldsymbol{y}_{t+1} | \boldsymbol{y}_t) \mathsf{P}(\boldsymbol{x}_{t+1} | \boldsymbol{y}_{t+1}) \cdots \mathsf{P}(\boldsymbol{y}_T \mid \boldsymbol{y}_{T-1}) \cdot \mathsf{P}(\boldsymbol{x}_T \mid \boldsymbol{y}_T)$

 $\propto \sum_{\substack{y_{t-1} [\cdots \sum_{y_2} [\sum_{y_1} P(y_1) \cdot P(x_1 | y_1) \cdot P(y_2 | y_1)] \cdot P(x_2 | y_2) \cdot P(y_3 | y_2)] \cdots } P(y_1 | y_{t-1})] \cdot P(x_t | y_t) \cdot P(x_t | y_t) \cdot P(x_{t+1} | y_{t+1}) \cdots \sum_{y_{T-1}} [P(y_{T-1} | y_{T-2}) \cdot P(x_{T-1} | y_{T-1}) \cdot \sum [P(y_T | y_{T-1} | y_{T-1} | y_{T-1}) \cdot \sum [P(y_T | y_{T-1} | y_{T-1} | y_{T-1}) \cdot \sum [P(y_T | y_{T-1} | y_{T-1} | y_{T-1} | y_{T-1} | y_{T-1}) \cdot \sum [P(y_T | y_{T-1} |$

Forward-Backward Algorithm

- $\alpha_{t}(y_{t}) = \sum_{y_{t-1}} P(y_{t} | y_{t-1}) \cdot P(\mathbf{x}_{t} | y_{t}) \cdot \alpha_{t-1}(y_{t-1})$ - This is the sum over the arcs coming into $y_{t} = k$
 - It is computed "forward" along the sequence and stored in the trellis

 $\beta_{t}(y_{t}) = \sum_{y_{t+1}} P(y_{t+1}|y_{t}) \cdot P(\mathbf{x}_{t+1} \mid y_{t+1}) \cdot \beta_{t+1}(y_{t+1})$

 It is computed "backward" along the sequence and stored in the trellis

 $\blacksquare \mathsf{P}(\mathsf{y}_t \mid \mathsf{X}) = \alpha_t(\mathsf{y}_t) \beta_t(\mathsf{y}_t) / [\sum_k \alpha_t(\mathsf{k}) \beta_t(\mathsf{k})]$

Training Hidden Markov Models

If the inputs and outputs are fullyobserved, this is extremely easy: $P(y_1=k) = [\# examples with y_1=k] / m$ $P(y_t = k | y_{t-1} = k') =$ $[\# < k,k' > transitions] / [\# of times y_t = k]$ $P(x_i = v | y = k) =$ [# times y=k and $x_i = v$] / [# times $y_t = k$] Should apply Laplace corrections to these estimates

Conditional Random Fields

The y's form a Markov Random Field conditioned on X: P(Y|X)

Lafferty, McCallum, & Pereira (2001)

Markov Random Fields

Graph G = (V,E)

- Each vertex $v \in V$ represents a random variable y_v .
- Each edge represents a direct probabilistic dependency.

P(Y) = $1/Z \exp \left[\sum_{c} \Psi_{c}(c(Y))\right]$

- c indexes the cliques in the graph
- Ψ_{c} is a potential function
- c(Y) selects the random variables participating in clique c.

A Simple MRF

Cliques:
singletons: {y₁}, {y₂}, {y₃}
pairs (edges); {y₁,y₂}, {y₂,y₃}
P((y₁,y₂,y₃)) = 1/Z exp[Ψ₁(y₁) + Ψ₂(y₂) + Ψ₃(y₃) + Ψ₁₂(y₁,y₂) + Ψ₂₃(y₂,y₃)]

CRF Potential Functions are Conditioned on X

- $\Psi_t(y_t, X)$: how compatible is y_t with X?
- Ψ_{t,t-1}(y_t,y_{t-1},X): how compatible is a transition from y_{t-1} to
 y_t with X?

CRF Potentials are Log Linear Models

 $\Psi_{t}(\mathbf{y}_{t}, \mathbf{X}) = \sum_{b} \beta_{b} g_{b}(\mathbf{y}_{t}, \mathbf{X})$ $\Psi_{t,t+1}(\mathbf{y}_{t}, \mathbf{y}_{t+1}, \mathbf{X}) = \sum_{a} \lambda_{a} f_{a}(\mathbf{y}_{t}, \mathbf{y}_{t+1}, \mathbf{X})$

where g_b and f_a are user-defined boolean functions ("features")
 – Example: g₂₃ = [x_t = "o" and y_t = /@/]

we will lump them together as $\Psi_t(y_t, y_{t+1}, X) = \sum_a \lambda_a f_a(y_t, y_{t+1}, X)$

Making Predictions with CRFs

Viterbi and Forward-Backward algorithms can be applied exactly as for HMMs

Training CRFs

Let $\theta = \{\beta_1, \beta_2, \dots, \lambda_1, \lambda_2, \dots\}$ be all of our parameters Let F_{θ} be our CRF, so $F_{\theta}(Y,X) = P(Y|X)$ **Define the loss function L(Y, F_{\theta}(Y, X)) to be** the Negative Log Likelihood $L(Y,F_{\theta}(Y,X)) = -\log F_{\theta}(Y,X)$ Goal: Find θ to minimize loss (maximize likelihood) Algorithm: Gradient Descent

$$\begin{aligned} & \text{Gradient Computation} \\ g_q &= \frac{\partial}{\partial \lambda_q} \log P(Y|X) \\ &= \frac{\partial}{\partial \lambda_q} \log \frac{\prod_t \exp \Psi_t(y_t, y_{t-1}, X)}{Z} \\ &= \frac{\partial}{\partial \lambda_q} \sum_t \Psi_t(y_t, y_{t-1}, X) - \log Z \\ &= \sum_t \frac{\partial}{\partial \lambda_q} \sum_a \lambda_a f_a(y_t, y_{t-1}, X) - \frac{\partial}{\partial \lambda_q} \log Z \\ &= \sum_t f_q(y_t, y_{t-1}, X) - \frac{\partial}{\partial \lambda_q} \log Z \end{aligned}$$

Gradient of Z

$$\begin{aligned} \frac{\partial}{\partial \lambda_q} \log Z &= \frac{1}{Z} \frac{\partial Z}{\partial \lambda_q} \\ &= \frac{1}{Z} \frac{\partial}{\partial \lambda_q} \sum_{Y'} \prod_t \exp \Psi_t(y'_t, y'_{t-1}, X) \\ &= \frac{1}{Z} \frac{\partial}{\partial \lambda_q} \sum_{Y'} \exp \sum_t \Psi_t(y'_t, y'_{t-1}, X) \\ &= \frac{1}{Z} \sum_{Y'} \exp \left[\sum_t \Psi_t(y'_t, y'_{t-1}, X) \right] \sum_t \frac{\partial}{\partial \lambda_q} \Psi_t(y'_t, y'_{t-1}, X) \\ &= \sum_{Y'} \frac{\exp \left[\sum_t \Psi_t(y'_t, y'_{t-1}, X) \right]}{Z} \sum_t \frac{\partial}{\partial \lambda_q} \sum_a \lambda_a f_a(y'_t, y'_{t-1}, X) \\ &= \sum_{Y'} P(Y'|X) \left[\sum_t f_q(y'_t, y'_{t-1}, X) \right] \end{aligned}$$

Gradient Computation

$$g_q = \sum_t f_q(y_t, y_{t-1}, X) - \sum_{Y'} P(Y'|X) \left[\sum_t f_q(y'_t, y'_{t-1}, X) \right]$$

Number of times feature q is true minus the <u>expected</u> number of times feature q is true. This can be computed via the forward backward algorithm. First, apply forward-backward to compute $P(y_{t-1}, y_t | X)$.

$$P(y_{t-1}, y_t | X) = \frac{1}{Z} \sum_{y_t} \sum_{y_{t-1}} \alpha_{t-1}(y_{t-1}) \cdot \exp \Psi(y_t, y_{t-1}, X) \cdot \beta_t(y_t)$$

Then compute the gradient with respect to each λ_{a}

$$g_q = \sum_{t} f_q(y_t, y_{t-1}, X) - \sum_{y_t} \sum_{y_{t-1}} P(y_{t-1}, y_t | X) f_q(y_t, y_{t-1}, X)$$

Discriminative Methods

Learn a discriminant function to which the Viterbi algorithm can be applied

- "just get the right answer"

Methods:

- Averaged perceptron (Collins)
- Hidden Markov SVMs (Altun, et al.)
- Max Margin Markov Nets (Taskar, et al.)

Collins' Perceptron Method

If we ignore the global normalizer in the CRF, the score for a label sequence Y given an input sequence X is

$$score(Y) = \sum_{t} \sum_{a} \lambda_a f_a(y_{t-1}, y_t, X)$$

Collin's approach is to adjust the weights λ_a so that the correct label sequence gets the highest score according to the Viterbi algorithm

Sequence Perceptron Algorithm

Initialize weights λ_a = 0
 For l = 1, ..., L do

 For each training example (X_i,Y_i)

apply Viterbi algorithm to find the path Ŷ with the highest score

If or all *a*, update λ_a according to

 $\lambda_a := \lambda_a + \sum_t \left[f_a(y_t, y_{t-1}, X) - f_a(\hat{y}_t, \hat{y}_{t-1}, X) \right]$

Compares the "viterbi path" to the "correct path". Note that no update is made if the viterbi path is correct.

Averaged Perceptron

Let λ_a^{ℓ,i} be the value of λ_a after processing training example *i* in iteration ℓ
 Define λ_a^{*} = the average value of λ_a = 1/(LN) Σ_{ℓ,i} λ_a^{ℓ,i}
 Use these averaged weights in the final classifier

Collins Part-of-Speech Tagging with Averaged Sequence Perceptron

Without averaging: 3.68% error
 20 iterations
 With averaging: 2.93% error
 10 iterations

Hidden Markov SVM

- Define a kernel between two input values x and x': k(x,x').
- Define a kernel between (X,Y) and (X',Y') as follows:

K((X,Y), (X',Y')) =

 $\sum_{s,t} I[y_{s-1} = y'_{t-1} \& y_s = y'_t] + I[y_s = y'_t] k(\mathbf{x}_s, \mathbf{x'}_t)$ Number of (y_{t-1}, y_t) transitions that they share + Number of matching labels (weighted by similarity between the **x** values)

Dual Form of Linear Classifier

 Score(Y|X) = ∑_j ∑_a α_j(Y_a) K((X_j,Y_a), (X,Y)) *a* indexes "support vector" label sequences Y_a

 Learning algorithm finds - set of Y_a label sequences - weight values α_j(Y_a)

Dual Perceptron Algorithm

Initialize $\alpha_j = 0$ For ℓ from 1 to L do
– For i from 1 to N do $\hat{Y} = \operatorname{argmax}_Y \operatorname{Score}(Y \mid X_i)$ if $\hat{Y} \neq Y_i$ then
– $\alpha_i(Y_i) = \alpha_i(Y_i) + 1$ – $\alpha_i(\hat{Y}) = \alpha_i(\hat{Y}) - 1$

Hidden Markov SVM Algorithm

For all i initialize $-S_i = \{Y_i\}$ set of "support vector sequences" for i $- \alpha_{i}(Y) = 0$ for all Y in S_i For *l* from 1 to L do – For i from 1 to N do $\mathbf{I} \hat{\mathbf{Y}} = \operatorname{argmax}_{\mathbf{Y} \neq \mathbf{Y}_{i}} \operatorname{Score}(\mathbf{Y} \mid \mathbf{X}_{i})$ If Score($Y_i | X_i$) < Score($\hat{Y} | X_i$) $-Add \hat{Y} to S_i$ – Solve quadratic program to optimize the $\alpha_i(Y)$ for all Y in S_i to maximize the margin between Y_i and all of the other Y's in S_i

 $- If \alpha_i(Y) = 0$, delete Y from S_i

Altun et al. comparison

Named Entity Classification

Maximum Margin Markov Networks

Define SVM-like optimization problem to maximize the per time step margin Define $\Delta F(X_i, Y_i, \hat{Y}) = F(X_i, Y_i) - F(X_i, \hat{Y})$ $\Delta Y(Y_i, \hat{Y}) = \sum_i I[\hat{y}_i \neq y_{it}]$ MMM SVM formulation: min $||w||^2 + C \sum_i \xi_i$ subject to $\mathbf{w} \cdot \Delta F(X_i, Y_i, \hat{Y}) \geq \Delta Y(Y_i, \hat{Y}) + \xi_i$ forall Y, forall i

Dual Form

maximize $\sum_{i} \sum_{Y} \alpha_{i}(\hat{Y}) \Delta(Y_{i}, \hat{Y}) \frac{1}{2} \sum_{i} \sum_{\hat{\mathbf{Y}}} \sum_{\hat{\mathbf{Y}}} \alpha_{i}(\hat{\mathbf{Y}}) \alpha_{i}(\hat{\mathbf{Y}}) \left[\Delta F(\mathbf{X}_{i},\mathbf{Y}_{i},\hat{\mathbf{Y}}) \cdot \right]$ $\Delta F(X_i, Y_i, \hat{Y}')]$ subject to $\sum_{\hat{\mathbf{Y}}} \alpha_{\mathbf{i}}(\hat{\mathbf{Y}}) = \mathbf{C}$ forall i $\alpha_i(\hat{Y}) \geq 0$ forall i, forall \hat{Y} Note that there are exponentially-many Ŷ label sequences

Converting to a Polynomial-Sized Formulation

Note the constraints:

 $\sum_{\hat{\mathbf{Y}}} \alpha_{\mathbf{i}}(\hat{\mathbf{Y}}) = \mathbf{C}$ forall i

 $\alpha_i(\hat{Y}) \ge 0$ forall i, forall \hat{Y}

These imply that for each i, the α_i(Ŷ) values are proportional to a probability distribution:
Q(Ŷ | X_i) = α_i(Ŷ) / C

Because the MRF is a simple chain, this distribution can be factored into local distributions:

 $Q(\hat{Y} \mid X_i) = \prod_t Q(\hat{y}_{t-1}, \hat{y}_t \mid X_i)$

Let $\mu_i(\hat{y}_{t-1}, \hat{y}_t)$ be the unnormalized version of Q

$$\begin{array}{l} \text{Reformulated Dual Form} \\ \max \sum_{i} \sum_{t} \sum_{\hat{y}_{t}} \mu_{i}(\hat{y}_{t}) I[\hat{y}_{t} \neq y_{i,t}] - \\ \frac{1}{2} \sum_{i,j} \sum_{t} \sum_{\hat{y}_{t}, \hat{y}_{t-1}} \sum_{s} \sum_{\hat{y}'_{s}, \hat{y}'_{s-1}} \mu_{i}(\hat{y}_{t-1}, \hat{y}_{t}) \mu_{j}(\hat{y}'_{s-1}, \hat{y}'_{s}) \\ \Delta F(\hat{y}_{t-1}, \hat{y}_{t}, X_{i}) \cdot \Delta F(\hat{y}'_{s-1}, \hat{y}'_{s}, X_{j}) \end{array}$$

subject to

$$egin{aligned} &\sum\limits_{\widehat{y}_{t-1}} \mu_i(\widehat{y}_{t-1},\widehat{y}_t) &=& \mu_i(\widehat{y}_t) \ &\sum\limits_{\widehat{y}_t} \mu_i(\widehat{y}_t) &=& C \ &\mu_i(\widehat{y}_{t-1},\widehat{y}_t) &\geq& 0 \end{aligned}$$

Variables in the Dual Form

μ_i(k,k') for each training example i and each possible class labels k, k': O(NK²)
 μ_i(k) for each trianing example i and possible class label k: O(NK)
 Polynomial!

Taskar et al. comparison Handwriting Recognition

log-reg: logistic regression sliding window

CRF:

mSVM: multiclass SVM sliding window

M^3N: max margin markov net

Current State of the Art

Discriminative Methods give best results

- not clear whether they scale
- published results all involve small numbers of training examples and very long training times
- Work is continuing on making CRFs fast and practical
 - new methods for training CRFs
 - potentially extendable to discriminative methods