Sequential Supervised Learning

Many Application Problems Require Sequential Learning

-Part-of-speech Tagging
\square Information Extraction from the Web
-Text-to-Speech Mapping

Part-of-Speech Tagging

\square Given an English sentence, can we assign a part of speech to each word?

- "Do you want fries with that?"
- <verb pron verb noun prep pron>

Information Extraction from the Web

<dl><dt>Srinivasan Seshan (Carnegie Mellon University) <dt><i>Making Virtual Worlds Real</i><dt>Tuesday, June 4, 2002<dd>2:00 PM , 322 Sieg<dd>Research Seminar

* * * name name * * affiliation affiliation affiliation * * * * title title title title *** date date date date * time time * location location * event-type event-type

Text-to-Speech Mapping

■"photograph" => /f-0t@graf-/

Sequential Supervised Learning (SSL)

\square Given: A set of training examples of the form $\left(\mathbf{X}_{\mathrm{i}}, \mathbf{Y}_{\mathrm{i}}\right)$, where
$\mathbf{X}_{\mathrm{i}}=\left\langle x_{i, 1}, \ldots, x_{i, T_{i}}\right\rangle$ and $\mathbf{Y}_{i}=\left\langle y_{i, 1}, \ldots, y_{i, T_{i}}\right\rangle$ are sequences of length T_{i}
\square Find: A function f for predicting new sequences: $\mathbf{Y}=f(\mathbf{X})$.

Examples of

Sequential Supervised Learning

Domain
Input X_{i}
Output \mathbf{Y}_{i}

Part-of-speech Tagging	sequence of words	sequence of parts of speech
Information	sequence of tokens	sequence of field labels $\{$ name, ...\}
Test-to-speech Mapping	sequence of letters	sequence phonemes

Two Kinds of Relationships

- "Vertical" relationship between the x_{t}^{\prime} s and y_{t} 's - Example: "Friday" is usually a "date"
- "Horizontal" relationships among the y_{t}^{\prime} s - Example: "name" is usually followed by "affiliation"
- SSL can (and should) exploit both kinds of information

Existing Methods

- Hacks
- Sliding windows
- Recurrent sliding windows
- Hidden Markov models
- joint distribution: $\mathrm{P}(\mathrm{X}, \mathrm{Y})$
\square Conditional Random Fields
- conditional distribution: $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$
\square Discriminant Methods: HM-SVMs, MMMs, voted perceptrons
- discriminant function: $\mathrm{f}(\mathrm{Y} ; \mathrm{X})$

Sliding Windows

Properties of Sliding Windows

\square Converts SSL to ordinary supervised learning

- Only captures the relationship between (part of) X and y_{t}. Does not explicitly model relations among the y_{t}^{\prime} s
\square Assumes each window is independent

Recurrent Sliding Windows

Do	you	want	fries	with	that		
Do	you		\rightarrow	verb			
Do	you	want	verb	\rightarrow	pron		
	you	want	fries	pron	\rightarrow	verb	
		want	fries	with	verb	\rightarrow	noun

fries	with	that	noun

| with | that | | prep |
| :--- | :--- | :--- | :--- |\rightarrow pron

Recurrent Sliding Windows

\square Key Idea: Include y_{t} as input feature when computing y_{t+1}.
\square During training:

- Use the correct value of y_{t}
- Or train iteratively (especially recurrent neural networks)
-During evaluation:
- Use the predicted value of y_{t}

Properties of Recurrent Sliding Windows

\square Captures relationship among the y's, but only in one direction!
\square Results on text-to-speech:

Method	Direction	Words	Letters
sliding window	none	12.5%	69.6%
recurrent s. w.	left-right	17.0%	67.9%
recurrent s. w.	right-left	24.4%	74.2%

Hidden Markov Models

- Generalization of Naïve Bayes to SSL

- P(y_{1})
- $P\left(y_{t} \mid y_{t-1}\right)$ assumed the same for all t
$\square P\left(x_{t} \mid y_{t}\right)=P\left(x_{t, 1} \mid y_{t}\right) \cdot P\left(x_{t, 2} \mid y_{t}\right) \cdots P\left(x_{t, n}, y_{t}\right)$ assumed the same for all t

Making Predictions with HMMs

-Two possible goals:
$-\operatorname{argmax}_{\mathrm{Y}} \mathrm{P}(\mathrm{Y} \mid \mathrm{X})$
\square find the most likely sequence of labels Y given the input sequence X
$-\operatorname{argmax}_{y_{t}} P\left(y_{t} \mid X\right)$ forall t
\square find the most likely label y_{t} at each time t given the entire input sequence X

Finding Most Likely Label Sequence: The Trellis

Every label sequence corresponds to a path through the trellis graph.
The probability of a label sequence is proportional to

$$
P\left(y_{1}\right) \cdot P\left(x_{1} \mid y_{1}\right) \cdot P\left(y_{2} \mid y_{1}\right) \cdot P\left(x_{2} \mid y_{2}\right) \cdots P\left(y_{T} \mid y_{T-1}\right) \cdot P\left(x_{T} \mid y_{T}\right)
$$

Converting to Shortest Path Problem

verb
pronoun
noun
adjective
$\max _{y_{1}, \ldots, y_{T}} P\left(y_{1}\right) \cdot P\left(x_{1} \mid y_{1}\right) \cdot P\left(y_{2} \mid y_{1}\right) \cdot P\left(x_{2} \mid y_{2}\right) \cdots P\left(y_{T} \mid y_{T-1}\right) \cdot P\left(x_{T} \mid y_{T}\right)=$ $\min _{P\left(x_{\mathrm{T}} \mid \ldots, y_{T}\right)}-\log \left[P\left(y_{1}\right) \cdot P\left(x_{1} \mid y_{1}\right)\right]+-\log \left[P\left(y_{2} \mid y_{1}\right) \cdot P\left(x_{2} \mid y_{2}\right)\right]+\cdots+-\log \left[P\left(y_{T} \mid y_{T-1}\right) \cdot\right.$
shortest path through graph. edge cost $=-\log \left[P\left(y_{t} \mid y_{t-1}\right) \cdot P\left(x_{t} \mid y_{t}\right)\right]$

Finding Most Likely Label Sequence: The Viterbi Algorithm

Step t of the Viterbi algorithm computes the possible successors of state $\mathrm{y}_{\mathrm{t}-1}$ _ and computes the total path length for each edge

Finding Most Likely Label Sequence: The Viterbi Algorithm

Each node $y_{t}=k$ stores the cost μ of the shortest path that reaches it from s and the predecessor class $y_{t-1}=k^{\prime}$ that achieves this cost
$k^{\prime}=\operatorname{argmin}_{y_{t-1}}-\log \left[P\left(y_{t} \mid y_{t-1}\right) \cdot P\left(x_{t} \mid y_{t}\right)\right]+\mu\left(y_{t-1}\right)$
$\mu(k)=\min _{y_{t-1}}-\log \left[P\left(y_{t} \mid y_{t-1}\right) \cdot P\left(x_{t} \mid y_{t}\right)\right]+\mu\left(y_{t-1}\right)$

Finding Most Likely Label Sequence: The Viterbi Algorithm

Compute Successors...

Finding Most Likely Label Sequence: The Viterbi Algorithm

Compute and store shortest incoming arc at each node

Finding Most Likely Label Sequence: The Viterbi Algorithm

Compute successors

Finding Most Likely Label Sequence: The Viterbi Algorithm

Compute and store shortest incoming arc at each node

Finding Most Likely Label Sequence: The Viterbi Algorithm

verb
pronoun
noun
adjective

Compute successors...

Finding Most Likely Label Sequence: The Viterbi Algorithm

verb
pronoun
noun
adjective

Compute and store shortest incoming edges

Finding Most Likely Label Sequence: The Viterbi Algorithm

Compute successors (trivial)

Finding Most Likely Label Sequence: The Viterbi Algorithm

Compute best edge into f

Finding Most Likely Label Sequence: The Viterbi Algorithm

Now trace back along best incoming edges to recover the predicted Y sequence: "verb pronoun verb noun noun"

Finding the Most Likely Label at time $\mathrm{t}: \mathrm{P}\left(\mathrm{y}_{\mathrm{t}} \mid \mathrm{X}\right)$

$P\left(y_{3}=2 \mid X\right)=$ probability of reaching $y_{3}=2$ from the start * probability of getting from $y_{3}=2$ to the finish

Finding the most likely class at each time t
goal: compute $\mathrm{P}\left(\mathrm{y}_{\mathrm{t}} \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right)$

$$
\begin{aligned}
& \propto \sum_{y_{1: t-1}} \sum_{y_{t+1: T}} P\left(y_{1}\right) \cdot P\left(x_{1} \mid y_{1}\right) \cdot P\left(y_{2} \mid y_{1}\right) \cdot P\left(x_{2} \mid y_{2}\right) \cdots P\left(y_{T} \mid y_{T-1}\right) \cdot P\left(x_{T} \mid y_{T}\right) \\
& \propto \sum_{y_{1: t-1}} P\left(y_{1}\right) \cdot P\left(x_{1} \mid y_{1}\right) \cdot P\left(y_{2} \mid y_{1}\right) \cdot P\left(x_{2} \mid y_{2}\right) \cdots P\left(y_{t} \mid y_{t-1}\right) \cdot P\left(x_{t} \mid y_{t}\right) \cdot \\
& \quad \sum_{y_{t+1: T}} P\left(y_{t+1} \mid y_{t}\right) P\left(x_{t+1} \mid y_{t+1}\right) \cdots P\left(y_{T} \mid y_{T-1}\right) \cdot P\left(x_{T} \mid y_{T}\right) \\
& \propto \sum_{y_{t_{t 1}}[}\left[\cdots \sum_{y_{2}}\left[\sum_{y_{1}} P\left(y_{1}\right) \cdot P\left(x_{1} \mid y_{1}\right) \cdot P\left(y_{2} \mid y_{1}\right)\right] \cdot P\left(x_{2} \mid y_{2}\right) \cdot P\left(y_{3} \mid y_{2}\right)\right] \cdots \\
& \left.P\left(y_{t} \mid y_{t-1}\right)\right] \\
& P\left(x_{1} \mid y_{t}\right) \cdot \\
& \sum_{y_{t+1}}\left[P (y _ { t + 1 } | y _ { t }) \cdot P (x _ { t + 1 } | y _ { t + 1 }) \cdots \sum _ { y _ { T - 1 } } \left[P (y _ { T - 1 } | y _ { T - 2 }) \cdot P (x _ { T - 1 } | y _ { T - 1 }) \cdot \sum \left[P \left(y_{T} \mid y_{T-}\right.\right.\right.\right. \\
& \left.\left.1) \cdot P\left(x_{T} \mid y_{T}\right)\right] \cdots\right]
\end{aligned}
$$

Forward-Backward Algorithm

$\square \alpha_{t}\left(y_{t}\right)=\sum_{y_{t-1}} P\left(y_{t} \mid y_{t-1}\right) \cdot P\left(x_{t} \mid y_{t}\right) \cdot \alpha_{t-1}\left(y_{t-1}\right)$

- This is the sum over the arcs coming into $y_{t}=$ k
- It is computed "forward" along the sequence and stored in the trellis
$\square \beta_{t}\left(y_{t}\right)=\sum_{y_{t+1}} P\left(y_{t+1} \mid y_{t}\right) \cdot P\left(x_{t+1} \mid y_{t+1}\right) \cdot \beta_{t+1}\left(y_{t+1}\right)$
- It is computed "backward" along the sequence and stored in the trellis
$\square \mathrm{P}\left(\mathrm{y}_{\mathrm{t}} \mid \mathrm{X}\right)=\alpha_{\mathrm{t}}\left(\mathrm{y}_{\mathrm{t}}\right) \beta_{\mathrm{t}}\left(\mathrm{y}_{\mathrm{t}}\right) /\left[\sum_{\mathrm{k}} \alpha_{\mathrm{t}}(\mathrm{k}) \beta_{\mathrm{t}}(\mathrm{k})\right]$

Training Hidden Markov Models

- If the inputs and outputs are fullyobserved, this is extremely easy:
$\square P\left(y_{1}=k\right)=\left[\#\right.$ examples with $\left.y_{1}=k\right] / m$
$\square P\left(y_{t}=k \mid y_{t-1}=k\right)=$
[\# <k, $\mathrm{k}>$ transitions] / [\# of times $\mathrm{y}_{\mathrm{t}}=\mathrm{k}$]
$\square P\left(x_{j}=v \mid y=k\right)=$
[\# times $\mathrm{y}=\mathrm{k}$ and $\mathrm{x}_{\mathrm{j}}=\mathrm{v}$] / [\# times $\mathrm{y}_{\mathrm{t}}=\mathrm{k}$]
-Should apply Laplace corrections to these estimates

Conditional Random Fields

- The y_{t}^{\prime} s form a Markov Random Field conditioned on $\mathrm{X}: ~ \mathrm{P}(\mathrm{Y} \mid \mathrm{X})$

Lafferty, McCallum, \& Pereira (2001)

Markov Random Fields

- Graph G = (V,E)
- Each vertex $v \in V$ represents a random variable y_{v}.
- Each edge represents a direct probabilistic dependency.
- $P(Y)=1 / Z \exp \left[\Sigma_{c} \Psi_{c}(c(Y))\right]$
- c indexes the cliques in the graph
- Ψ_{c} is a potential function
- $\mathrm{c}(\mathrm{Y})$ selects the random variables participating in clique c .

A Simple MRF

- Cliques:
- singletons: $\left\{\mathrm{y}_{1}\right\},\left\{\mathrm{y}_{2}\right\},\left\{\mathrm{y}_{3}\right\}$
- pairs (edges); $\left\{\mathrm{y}_{1}, \mathrm{y}_{2}\right\},\left\{\mathrm{y}_{2}, \mathrm{y}_{3}\right\}$
$\square P\left(\left\langle\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right\rangle\right)=1 / \mathrm{Z} \exp \left[\Psi_{1}\left(\mathrm{y}_{1}\right)+\Psi_{2}\left(\mathrm{y}_{2}\right)+\right.$

$$
\left.\Psi_{3}\left(\mathrm{y}_{3}\right)+\Psi_{12}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)+\Psi_{23}\left(\mathrm{y}_{2}, \mathrm{y}_{3}\right)\right]
$$

CRF Potential Functions are Conditioned on X

- $\Psi_{\mathrm{t}}\left(\mathrm{y}_{\mathrm{t}}, \mathrm{X}\right)$: how compatible is y_{t} with X ?
- $\Psi_{t, t-1}\left(y_{t}, y_{t-1}, \mathrm{X}\right)$: how compatible is a transition from $\mathrm{y}_{\mathrm{t}-1}$ to y_{t} with X ?

CRF Potentials are Log Linear Models

- $\Psi_{t}\left(y_{t}, X\right)=\sum_{b} \beta_{b} g_{b}\left(y_{t}, X\right)$
- $\Psi_{\mathrm{t}, \mathrm{t}+1}\left(\mathrm{y}_{\mathrm{t}, \mathrm{y}} \mathrm{y}_{\mathrm{t}+1}, \mathrm{X}\right)=\sum_{\mathrm{a}} \lambda_{\mathrm{a}} \mathrm{f}_{\mathrm{a}}\left(\mathrm{y}_{\mathrm{t},} \mathrm{y}_{\mathrm{t}+1}, \mathrm{X}\right)$
\square where g_{b} and f_{a} are user-defined boolean functions ("features")
- Example: $\mathrm{g}_{23}=\left[\mathrm{x}_{\mathrm{t}}=\right.$ "0" and $\mathrm{y}_{\mathrm{t}}=$ @ $\left.@\right]$
- we will lump them together as

$$
\Psi_{\mathrm{t}}\left(\mathrm{y}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}+1}, \mathrm{X}\right)=\sum_{\mathrm{a}} \lambda_{\mathrm{a}} \mathrm{f}_{\mathrm{a}}\left(\mathrm{y}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}+1}, \mathrm{X}\right)
$$

Making Predictions with CRFs

\square Viterbi and Forward-Backward algorithms can be applied exactly as for HMMs

Training CRFs

-Let $\theta=\left\{\beta_{1}, \beta_{2}, \ldots, \lambda_{1}, \lambda_{2}, \ldots\right\}$ be all of our parameters

- Let F_{θ} be our CRF, so $F_{\theta}(Y, X)=P(Y \mid X)$
- Define the loss function $L\left(Y, F_{\theta}(Y, X)\right)$ to be the Negative Log Likelihood

$$
L\left(Y, F_{\theta}(Y, X)\right)=-\log F_{\theta}(Y, X)
$$

\square Goal: Find θ to minimize loss (maximize likelihood)

- Algorithm: Gradient Descent

Gradient Computation

$$
\begin{aligned}
g_{q} & =\frac{\partial}{\partial \lambda_{q}} \log P(Y \mid X) \\
& =\frac{\partial}{\partial \lambda_{q}} \log \frac{\Pi_{t} \exp \Psi_{t}\left(y_{t}, y_{t-1}, X\right)}{Z} \\
& =\frac{\partial}{\partial \lambda_{q}} \sum_{t} \Psi_{t}\left(y_{t}, y_{t-1}, X\right)-\log Z \\
& =\sum_{t} \frac{\partial}{\partial \lambda_{q}} \sum_{a} \lambda_{a} f_{a}\left(y_{t}, y_{t-1}, X\right)-\frac{\partial}{\partial \lambda_{q}} \log Z \\
& =\sum_{t} f_{q}\left(y_{t}, y_{t-1}, X\right)-\frac{\partial}{\partial \lambda_{q}} \log Z
\end{aligned}
$$

Gradient of Z

$$
\begin{aligned}
\frac{\partial}{\partial \lambda_{q}} \log Z & =\frac{1}{Z} \frac{\partial Z}{\partial \lambda_{q}} \\
& =\frac{1}{Z} \frac{\partial}{\partial \lambda_{q}} \sum_{Y^{\prime}} \prod_{t} \exp \psi_{t}\left(y_{t}^{\prime}, y_{t-1}^{\prime}, X\right) \\
& =\frac{1}{Z} \frac{\partial}{\partial \lambda_{q}} \sum_{Y^{\prime}} \exp \sum_{t} \Psi_{t}\left(y_{t}^{\prime}, y_{t-1}^{\prime}, X\right) \\
& =\frac{1}{Z} \sum_{Y^{\prime}} \exp \left[\sum_{t} \Psi_{t}\left(y_{t}^{\prime}, y_{t-1}^{\prime}, X\right)\right] \sum_{t} \frac{\partial}{\partial \lambda_{q}} \Psi_{t}\left(y_{t}^{\prime}, y_{t-1}^{\prime}, X\right) \\
& =\sum_{Y^{\prime}} \frac{\exp \left[\sum_{t} \Psi_{t}\left(y_{t}^{\prime}, y_{t-1}^{\prime}, X\right)\right]}{Z} \sum_{t} \frac{\partial}{\partial \lambda_{q}} \sum_{a} \lambda_{a} f_{a}\left(y_{t}^{\prime}, y_{t-1}^{\prime}, X\right) \\
& =\sum_{Y^{\prime}} P\left(Y^{\prime} \mid X\right)\left[\sum_{t} f_{q}\left(y_{t}^{\prime}, y_{t-1}^{\prime}, X\right)\right]
\end{aligned}
$$

Gradient Computation

$$
g_{q}=\sum_{t} f_{q}\left(y_{t}, y_{t-1}, X\right)-\sum_{Y^{\prime}} P\left(Y^{\prime} \mid X\right)\left[\sum_{t} f_{q}\left(y_{t}^{\prime}, y_{t-1}^{\prime}, X\right)\right]
$$

Number of times feature q is true minus the expected number of times feature q is true. This can be computed via the forward backward algorithm. First, apply forward-backward to compute $\mathrm{P}\left(\mathrm{y}_{\mathrm{t}-1}, \mathrm{y}_{\mathrm{t}} \mid \mathrm{X}\right)$.

$$
P\left(y_{t-1}, y_{t} \mid X\right)=\frac{1}{Z} \sum_{y_{t}} \sum_{y_{t-1}} \alpha_{t-1}\left(y_{t-1}\right) \cdot \exp \Psi\left(y_{t}, y_{t-1}, X\right) \cdot \beta_{t}\left(y_{t}\right)
$$

Then compute the gradient with respect to each λ_{q}

$$
g_{q}=\sum_{t} f_{q}\left(y_{t}, y_{t-1}, X\right)-\sum_{y_{t}} \sum_{y_{t-1}} P\left(y_{t-1}, y_{t} \mid X\right) f_{q}\left(y_{t}, y_{t-1}, X\right)
$$

Discriminative Methods

-Learn a discriminant function to which the Viterbi algorithm can be applied

- "just get the right answer"
\square Methods:
- Averaged perceptron (Collins)
- Hidden Markov SVMs (Altun, et al.)
- Max Margin Markov Nets (Taskar, et al.)

Collins' Perceptron Method

\square If we ignore the global normalizer in the CRF, the score for a label sequence Y given an input sequence X is

$$
\operatorname{score}(Y)=\sum_{t} \sum_{a} \lambda_{a} f_{a}\left(y_{t-1}, y_{t}, X\right)
$$

\square Collin's approach is to adjust the weights λ_{a} so that the correct label sequence gets the highest score according to the Viterbi algorithm

Sequence Perceptron Algorithm

- Initialize weights $\lambda_{\mathrm{a}}=0$
- For $\ell=1, \ldots$, L do
- For each training example $\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}\right)$
rapply Viterbi algorithm to find the path \hat{Y} with the highest score
for all a, update λ_{a} according to

$$
\lambda_{\mathrm{a}}:=\lambda_{\mathrm{a}}+\sum_{\mathrm{t}}\left[\mathrm{f}_{\mathrm{a}}\left(\mathrm{y}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}-1}, \mathrm{X}\right)-\mathrm{f}_{\mathrm{a}}\left(\hat{\mathrm{y}}_{\mathrm{t}}, \hat{\mathrm{y}} \mathrm{t-1},, \mathrm{X}\right)\right]
$$

\square Compares the "viterbi path" to the "correct path". Note that no update is made if the viterbi path is correct.

Averaged Perceptron

\square Let $\lambda_{a}^{\ell, i}$ be the value of λ_{a} after processing training example i in iteration ℓ

- Define $\lambda_{a}{ }^{*}=$ the average value of $\lambda_{\mathrm{a}}=$ $1 /(\mathrm{LN}) \sum_{\ell, \mathrm{i}} \lambda_{\mathrm{a}}^{\ell, \mathrm{i}}$
\square Use these averaged weights in the final classifier

Collins Part-of-Speech Tagging with Averaged Sequence Perceptron

\square Without averaging: 3.68\% error

- 20 iterations
\square With averaging: 2.93\% error
- 10 iterations

Hidden Markov SVM

- Define a kernel between two input values x and x^{\prime} : $k\left(x, x^{\prime}\right)$.
- Define a kernel between (X, Y) and (X^{\prime}, Y^{\prime}) as follows:

$$
\begin{aligned}
& \mathrm{K}\left((X, Y),\left(X^{\prime}, Y^{\prime}\right)\right)= \\
& \quad \sum_{\mathrm{s}, \mathrm{t}} \mathrm{I}\left[\mathrm{y}_{\mathrm{s}-1}=\mathrm{y}_{\mathrm{t}-1}^{\prime} \& \mathrm{y}_{\mathrm{s}}=\mathrm{y}_{\mathrm{t}}^{\prime}\right]+\mathrm{I}\left[\mathrm{y}_{\mathrm{s}}=y_{t}^{\prime}\right] \mathrm{k}\left(\mathrm{X}_{\mathrm{s}}, \mathrm{x}_{\mathrm{t}}^{\prime}\right)
\end{aligned}
$$

Number of $\left(\mathrm{y}_{\mathrm{t}-1}, \mathrm{y}_{\mathrm{t}}\right)$ transitions that they share + Number of matching labels (weighted by similarity between the x values)

Dual Form of Linear Classifier

- Score(Y|X) = $\Sigma_{j} \Sigma_{a} \alpha_{j}\left(Y_{a}\right) K\left(\left(X_{j}, Y_{a}\right),(X, Y)\right)$
a indexes "support vector" label sequences Y_{a}
\square Learning algorithm finds
- set of Y_{a} label sequences
- weight values $\alpha_{j}\left(Y_{a}\right)$

Dual Perceptron Algorithm

- Initialize $\alpha_{j}=0$
-For ℓ from 1 to L do
- For i from 1 to N do
- $\hat{Y}=\operatorname{argmax}_{Y} \operatorname{Score}\left(\mathrm{Y} \mid \mathrm{X}_{\mathrm{i}}\right)$

Iif $\hat{Y} \neq Y_{i}$ then

$$
\begin{aligned}
& -\alpha_{i}\left(Y_{i}\right)=\alpha_{i}\left(Y_{i}\right)+1 \\
& -\alpha_{i}(\hat{Y})=\alpha_{i}(\hat{Y})-1
\end{aligned}
$$

Hidden Markov SVM Algorithm

\square For all i initialize
$-S_{i}=\left\{Y_{i}\right\}$ set of "support vector sequences" for i

- $\alpha_{i}(Y)=0$ for all Y in S_{i}
\square For ℓ from 1 to L do
- For i from 1 to N do $\square \hat{Y}=\operatorname{argmax}_{Y_{\neq Y_{i}}} \operatorname{Score}\left(Y \mid X_{i}\right)$ 1 If $\operatorname{Score}\left(Y_{i} \mid X_{i}\right)<\operatorname{Score}\left(\hat{Y} \mid X_{i}\right)$
- Add \hat{Y} to S_{i}
- Solve quadratic program to optimize the $\alpha_{i}(Y)$ for all Y in S_{i} to maximize the margin between Y_{i} and all of the other Y 's in S_{i}
- If $\alpha_{i}(Y)=0$, delete Y from S_{i}

Altun et al. comparison

Named Entity Classification

Maximum Margin Markov Networks

- Define SVM-like optimization problem to maximize the per time step margin
\square Define

$$
\begin{aligned}
& \Delta F\left(X_{i}, Y_{i}, \hat{Y}\right)=F\left(X_{i j}, Y_{i}\right)-F\left(X_{i}, \hat{Y}\right) \\
& \Delta Y\left(Y_{i}, \hat{Y}\right)=\sum_{i} l\left[\hat{y}_{t} \neq Y_{i}\right] \\
& \text {-MMM SVM formulation: }
\end{aligned}
$$

$\min \|w\|^{2}+C \sum_{i} \xi_{i}$
subject to

$$
w \cdot \Delta F\left(X_{i}, Y_{i}, \hat{Y}\right) \geq \Delta Y\left(Y_{i}, \hat{Y}\right)+\xi_{i} \text { forall } Y \text {, forall } i
$$

Dual Form

$\operatorname{maximize} \sum_{i} \sum_{Y} \alpha_{i}(\hat{Y}) \Delta\left(Y_{i}, \hat{Y}\right)-$

$$
1 / 2 \sum_{i} \sum_{\hat{Y}} \sum_{j} \sum_{\hat{Y}^{\prime}} \alpha_{i}(\hat{Y}) \alpha_{j}\left(\hat{Y}^{\prime}\right)\left[\Delta F\left(X_{i}, Y_{i}, \hat{Y}\right) .\right.
$$

$\left.\Delta \mathrm{F}\left(\mathrm{X}_{\mathrm{j}}, \mathrm{Y}_{\mathrm{j}} ; \hat{Y}^{\prime}\right)\right]$
subject to
$\sum_{\hat{Y}} \alpha_{i}(\hat{Y})=C$ forall i $\alpha_{i}(\hat{Y}) \geq 0$ forall i, forall \hat{Y}
Note that there are exponentially-many \hat{Y} label sequences

Converting to a Polynomial-Sized Formulation

\square Note the constraints:
$\sum_{\hat{Y}} \alpha_{i}(\hat{Y})=C$ forall i $\alpha_{i}(\hat{Y}) \geq 0$ forall i, forall \hat{Y}
\square These imply that for each i, the $\alpha_{i}(\hat{Y})$ values are proportional to a probability distribution:

$$
\mathrm{Q}\left(\hat{Y} \mid \mathrm{X}_{\mathrm{i}}\right)=\alpha_{i}(\hat{Y}) / \mathrm{C}
$$

- Because the MRF is a simple chain, this distribution can be factored into local distributions:

$$
Q\left(\hat{Y} \mid X_{i}\right)=\prod_{t} Q\left(\hat{y}_{t-1}, \hat{y}_{t} \mid X_{i}\right)
$$

- Let $\mu_{i}\left(\hat{\mathrm{y}}_{\mathrm{t}-1}, \hat{\mathrm{y}}_{\mathrm{t}}\right)$ be the unnormalized version of Q

Reformulated Dual Form

$$
\begin{aligned}
& \max \sum_{i} \sum_{t} \sum_{\widehat{y}_{t}} \mu_{i}\left(\hat{y}_{t}\right) I\left[\hat{y}_{t} \neq y_{i, t}\right]- \\
& \frac{1}{2} \sum_{i, j} \sum_{t} \sum_{\widehat{y}_{t}, \widehat{y}_{t-1}} \sum_{s} \sum_{\hat{y}_{s}^{\prime}, \hat{y}_{s}^{\prime}} \mu_{i}\left(\hat{y}_{t-1}, \widehat{y}_{t}\right) \mu_{j}\left(\widehat{y}_{s-1}^{\prime},,_{y}^{\prime}\right) \\
& \Delta F\left(\hat{y}_{t-1}, \hat{y}_{t}, X_{i}\right) \cdot \Delta F\left(\hat{y}_{s-1}^{\prime}, \hat{y}_{s}^{\prime}, X_{j}\right)
\end{aligned}
$$

subject to

$$
\begin{aligned}
\sum_{\widehat{y}_{t-1}} \mu_{i}\left(\widehat{y}_{t-1}, \widehat{y}_{t}\right) & =\mu_{i}\left(\widehat{y}_{t}\right) \\
\sum_{\widehat{y}_{t}} \mu_{i}\left(\widehat{y}_{t}\right) & =C \\
\mu_{i}\left(\widehat{y}_{t-1}, \widehat{y}_{t}\right) & \geq 0
\end{aligned}
$$

Variables in the Dual Form

$\square \mu_{\mathrm{i}}\left(\mathrm{k}, \mathrm{k}^{\prime}\right)$ for each training example i and each possible class labels k, k : $O\left(N^{2}\right)$
$\square \mu_{\mathrm{i}}(\mathrm{k})$ for each trianing example i and possible class label k : O(NK)
-Polynomial!

Taskar et al. comparison Handwriting Recognition

log-reg: logistic regression sliding window
CRF:
mSVM: multiclass SVM sliding window
$\mathrm{M}^{\wedge} 3 \mathrm{~N}$: max margin markov
net

Current State of the Art

- Discriminative Methods give best results
- not clear whether they scale
- published results all involve small numbers of training examples and very long training times
- Work is continuing on making CRFs fast and practical
- new methods for training CRFs
- potentially extendable to discriminative methods

