
3/5/2023

1

mjb – March 5, 2023
Computer Graphics

1

VulkanRayTracing.pptx

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

Vulkan Ray Tracing – 5 New Shader Types!

mjb – March 5, 2023
Computer Graphics

2Analog Ray Tracing Example

mjb – March 5, 2023
Computer Graphics

3Digital Ray Tracing Examples

Blender

IronCad
mjb – March 5, 2023

Computer Graphics

4The Rasterization Shader Pipeline That You Are used to Doesn’t Apply to
Vulkan Ray Tracing

= Fixed Function

= Programmable

1 2

3 4

3/5/2023

2

mjb – March 5, 2023
Computer Graphics

5The Vulkan Ray Tracing Pipeline Involves Five New Shader Types

Traversing the
Acceleration Structures

Intersection
Shader (rint)

Any Hit
Shader (rahit)

Closest Hit
Shader (rchit)

Ray Generation
Shader (rgen)

• A Ray Generation Shader runs on a 2D grid of threads. It begins the entire ray-tracing operation.

• An Intersection Shader implements ray-primitive intersections.

• An Any Hit Shader is called when the Intersection Shader finds a hit. It decides if that intersection
should be accepted or ignored.

• The Closest Hit Shader is called with the information about the hit that happened closest to the viewer.
Typically, lighting is done here, or firing off new rays to handle shadows, reflections, and refractions.

• A Miss Shader is called when no intersections are found for a given ray. Typically, it just sets its pixel
color to the background color.

Miss Shader
(rmiss)

Any hits found for this ray?

YesNo

trace()

Note: none of this lives in the hardware meant for rasterization
graphics. This is all built on top of the GPU compute functionality.

Unlike the rasterization pipeline, there is
no constant flow from one shader to the
next. Rather, particular shaders are
called to respond to particular events.

mjb – March 5, 2023
Computer Graphics

6Example: The Ray Intersection Process for a Sphere

Sphere equation: (x-xc) 2 + (y-yc) 2 + (z-zc) 2 = R2

Ray equation: (x,y,z) = (x0,y0,z0) + t*(dx,dy,dz)

Plugging (x,y,z) from the second equation into the first equation and multiplying-through and
simplifying gives:

At2 + Bt + C = 0 t1, t2 =
±

Solve for t1, t2 and analyze the solution like this:

1. If both t1 and t2 are complex (i.e., have an imaginary component), then the ray missed
the sphere completely.

2. If both t1 and t2 are real and identical, then the ray brushed the sphere at a tangent
point.

3. If both t1 and t2 are real and different, then the ray entered and exited the sphere.

In Vulkan terms:
gl_WorldRayOrigin = (x0,y0,z0)
gl_Hit = t
gl_WorldRayDirection = (dx,dy,dz)

1.

2.

3.

mjb – March 5, 2023
Computer Graphics

7Example: The Ray Intersection Process for a Cube

Plane equation: Ax + By + Cz + D = 0
Ray equation: (x,y,z) = (x0,y0,z0) + t*(dx,dy,dz)

Plugging (x,y,z) from the second equation into the first equation and multiplying
through and simplifying gives:

Qt + R = 0
Solve for t = -R/Q

A cube is actually the intersection of 6 half-space
planes (just 4 are shown here). Each of these
will produce its own t intersection value. Treat them
as pairs: (tx1,tx2) , (ty1,ty2) , (tz1,tz2)

The ultimate cube entry and exit values are:

tmin = max(min(tx1, tx2), min(ty1, ty2), min(tz1, tz2))
tmax = min(max(tx1, tx2), max(ty1, ty2), max(tz1, tz2))

This algorithm works
for all convex solids
(e.g., cylinder, cone)

mjb – March 5, 2023
Computer Graphics

8In a Raytracing, each ray typically hits a lot of Things

5 6

7 8

3/5/2023

3

mjb – March 5, 2023
Computer Graphics

9Acceleration Structures

• A Bottom-level Acceleration Structure (BLAS) reads the vertex data from vertex and index
VkBuffers to determine bounding boxes.

• You can also supply your own bounding box information to a BLAS.

• A Top-level Acceleration Structure (TLAS) holds transformations and pointers to multiple
BLASes.

• The BLAS is essentially used as a Model Coordinate bounding box, while the TLAS is
used as a World Coordinate bounding box.

Transform and
shading information

Transform and
shading information

Transform and
shading information

Transform and
shading information

Top Level Acceleration Structure

Bottom Level
Acceleration Structure

Bottom Level
Acceleration Structure

Bottom Level
Acceleration Structure

mjb – March 5, 2023
Computer Graphics

10Ray Generation Shader

layout(location = 1) rayPayload myPayLoad
{

vec4 color;
};

void
main()
{

trace(topLevel, …, 1);
imageStore(framebuffer, gl_GlobalInvocationID.xy, color);

}

A “payload” is information that keeps getting passed through the
processing of an individual ray. Different stages can add to it. It is
finally consumed at the very end, in this case by writing color into
the pixel being worked on.

Gets each individual ray going and writes the final color to the pixel

mjb – March 5, 2023
Computer Graphics

11A New Built-in GLSL Function

void trace
(

VkAccelerationStructure topLevel, // TLAS
uint rayFlags,
uint cullMask,
uint sbtRecordOffset,
uint sbtRecordStride,
uint missIndex,
vec3 origin, // x0, y0, z0

float tmin, // minimum t to allow (near)
vec3 direction, // dx, dy, dz
float tmax, // maximum t to allow (far)
int payload

);

In Vulkan terms (these are built-ins accessible from GLSL):
gl_WorldRayOrigin = (x0,y0,z0)
gl_Hit = t
gl_WorldRayDirection = (dx,dy,dz)

mjb – March 5, 2023
Computer Graphics

12Sample Intersection Shader Code

hitAttribute vec3 attribs

void main()
{

SpherePrimitive sph = spheres[gl_PrimitiveID];
vec3 orig = gl_WorldRayOrigin;
vec3 dir = normalize(gl_WorldRayDirection);

. . .
float discr = b*b – 4.*a*c;
if(discr < 0.)

return;

float tmp = (-b - sqrt(discr)) / (2.*a);
if(gl_RayTmin < tmp && tmp < gl_RayTmax)
{

vec3 p = orig + tmp * dir;
attribs = p;
reportIntersection(tmp, 0);
return;

}
tmp = (-b + sqrt(discr)) / (2.*a);
if(gl_RayTmin < tmp && tmp < gl_RayTmax)
{

vec3 p = orig + tmp * dir;
attribs = p;
reportIntersection(tmp, 0);
return;

}
}

Intersect a ray with an arbitrary 3D object.
Passes data to the Any Hit shader.
There is a built-in ray-triangle Intersection Shader.

9 10

11 12

3/5/2023

4

mjb – March 5, 2023
Computer Graphics

13Sample Miss Shader Code

Layout(location=0) rayPayload
{

vec4 color;
} myPayLoad;

void
main()
{

myPayload.color = vec4(0., 0., 0., 1.);
}

Handles a ray that doesn’t hit any objects

mjb – March 5, 2023
Computer Graphics

14Sample Any Hit Shader Code

layout(binding = 4, set = 0) buffer outputProperties
{

float outputValues[];
} outputData;

layout(location = 0) rayPayloadIn uint outputId;
layout(location = 1) rayPayloadIn uint hitCounter;
hitAttribute vec3 attribs;

void
main()
{

outputData.outputValues[outputId + hitCounter] = gl_PrimitiveID;
hitCounter = hitCounter + 1;

}

Handle a ray that hits anything.
Store information on each hit.
Can reject a hit.

mjb – March 5, 2023
Computer Graphics

15Sample Closest Hit Shader

uniform sampler2D uTexUnit;

rayPayload myPayLoad
{

vec4 color;
};

void
main()
{

vec3 stp = gl_WorldRayOrigin + gl_Hit * gl_WorldRayDirection;
color = texture(uTexUnit, stp); // material properties lookup

}

Handle the intersection closest to the viewer.
Collects data from calls to the Any Hit shader.
This shader can spawn more rays to handle shadows, reflections, and refractions.

In Vulkan terms:
gl_WorldRayOrigin = (x0,y0,z0)
gl_Hit = t
gl_WorldRayDirection = (dx,dy,dz)

mjb – March 5, 2023
Computer Graphics

16Other New Built-in Functions

void ignoreIntersection();

void terminateRay();

void reportIntersection(float hit, uint hitKind);

Loosely equivalent to “discard”

13 14

15 16

3/5/2023

5

mjb – March 5, 2023
Computer Graphics

17The Trigger comes from the Command Buffer:
vlCmdBindPipeline() and vkCmdTraceRays()

vkCmdBindPipeline(CommandBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING, RaytracePipeline);

vkCmdTraceRays(CommandBuffer.
raygenShaderBindingTableBuffer,
raygenShaderBindingOffset,
missShaderBindingTableBuffer,
missShaderBindingOffset,
missShaderBindingStride,
hitShaderBindingTableBuffer,
hitShaderBindingOffset,
hitShaderBindingStride,
callableShaderBindingTableBuffer,
callableShaderBindingOffset,
callableShaderBindingStride
width,
height,
depth);

mjb – March 5, 2023
Computer Graphics

18

https://www.youtube.com/watch?v=QL7sXc2iNJ8

Check This Out!

17 18

