
2/26/2023

1

mjb – February 26, 2023
Computer Graphics

1

Synchronization.pptx

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

Synchronization

mjb – February 26, 2023
Computer Graphics

2

Application

Remember the Overall Block Diagram?

Instance Instance

Physical
Device

Physical
Device

Physical
Device

Logical
Device

Logical
Device

Logical
Device

Logical
Device

Logical
Device

Q
u

e
u

e

Q
u

e
u

e

Q
u

e
u

e

Q
u

e
u

e

Q
u

e
u

e

Q
u

e
u

e

Q
u

e
u

e

Q
u

e
u

e

Q
u

e
u

e

Command Buffer

Command Buffer

Command Buffer

mjb – February 26, 2023
Computer Graphics

3

Application

Where Synchronization Fits in the Overall Block Diagram

Instance

Physical
Device

Logical
Device

Q
u

e
u

e

Command Buffer

Command Buffer

Command Buffer

Event

Q
u

e
u

e

Semaphore

Fence

mjb – February 26, 2023
Computer Graphics

4

• Indicates that a batch of commends has been processed from a queue. Basically
announces “I am finished!”.

• You create one and give it to a Vulkan function which sets it. Later on, you tell another
Vulkan function to wait for this semaphore to be signaled.

• You don’t end up setting, resetting, or checking the semaphore yourself.

• Semaphores must be initialized (“created”) before they can be used.

Semaphores

Ask for Something Try to Use that Something

Semaphore

Your program
continues

mjb – February 26, 2023
Computer Graphics

5Creating a Semaphore

VkSemaphoreCreateInfo vsci;
vsci.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
vsci.pNext = nullptr;
vsci.flags = 0;;

VkSemaphore semaphore;
result = vkCreateSemaphore(LogicalDevice, IN &vsci, PALLOCATOR, OUT &semaphore);

This doesn’t actually do anything with the semaphore – it just sets it up

mjb – February 26, 2023
Computer Graphics

6Semaphores Example during the Render Loop

VkSemaphore imageReadySemaphore;

VkSemaphoreCreateInfo vsci;
vsci.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
vsci.pNext = nullptr;
vsci.flags = 0;

result = vkCreateSemaphore(LogicalDevice, IN &vsci, PALLOCATOR, OUT &imageReadySemaphore);

uint32_t nextImageIndex;
vkAcquireNextImageKHR(LogicalDevice, IN SwapChain, IN UINT64_MAX,

IN imageReadySemaphore, IN VK_NULL_HANDLE, OUT &nextImageIndex);

. . .

VkPipelineStageFlags waitAtBottomOfPipe = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
VkSubmitInfo vsi;

vsi.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
vsi.pNext = nullptr;
vsi.waitSemaphoreCount = 1;
vsi.pWaitSemaphores = &imageReadySemaphore;
vsi.pWaitDstStageMask = &waitAtBottomOfPipe;
vsi.commandBufferCount = 1;
vsi.pCommandBuffers = &CommandBuffers[nextImageIndex];
vsi.signalSemaphoreCount = 0;
vsi.pSignalSemaphores = (VkSemaphore) nullptr;

result = vkQueueSubmit(presentQueue, 1, IN &vsi, IN renderFence);

Set the semaphore

Wait on the semaphore

You do this to wait for an image
to be ready to be rendered into

1 2

3 4

5 6

2/26/2023

2

mjb – February 26, 2023
Computer Graphics

7Fences

• Used to synchronize CPU-GPU tasks.

• Used when the host needs to wait for the device to complete something big.

• Announces that queue-submitted work is finished.

• You can un-signal, signal, test or block-while-waiting.

mjb – February 26, 2023
Computer Graphics

8Fences

#define VK_FENCE_CREATE_UNSIGNALED_BIT 0

VkFenceCreateInfo vfci;
vfci.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
vfci.pNext = nullptr;
vfci.flags = VK_FENCE_CREATE_UNSIGNALED_BIT; // = 0

// VK_FENCE_CREATE_SIGNALED_BIT is only other option

VkFence fence;
result = vkCreateFence(LogicalDevice, IN &vfci, PALLOCATOR, OUT &fence);

, , ,

// returns to the host right away:
result = vkGetFenceStatus(LogicalDevice, IN fence);

// result = VK_SUCCESS means it has signaled
// result = VK_NOT_READY means it has not signaled

// blocks the host from executing:
result = vkWaitForFences(LogicalDevice, 1, IN &fence, waitForAll, timeout);

// waitForAll = VK_TRUE: wait for all fences in the list
// waitForAll = VK_FALSE: wait for any one fence in the list
// timeout is a uint64_t timeout in nanoseconds (could be 0, which means to return immediately)
// timeout can be up to UINT64_MAX = 0xffffffffffffffff (= 580+ years)
// result = VK_SUCCESS means it returned because a fence (or all fences) signaled
// result = VK_TIMEOUT means it returned because the timeout was exceeded

Set the fence

Wait on the fence(s)

mjb – February 26, 2023
Computer Graphics

9Fence Example

VkFence renderFence;
vkCreateFence(LogicalDevice, &vfci, PALLOCATOR, OUT &renderFence);

VkPipelineStageFlags waitAtBottom = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;

VkQueue presentQueue;
vkGetDeviceQueue(LogicalDevice, FindQueueFamilyThatDoesGraphics(), 0, OUT &presentQueue);

VkSubmitInfo vsi;
vsi.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
vsi.pNext = nullptr;
vsi.waitSemaphoreCount = 1;
vsi.pWaitSemaphores = &imageReadySemaphore;
vsi.pWaitDstStageMask = &waitAtBottom;
vsi.commandBufferCount = 1;
vsi.pCommandBuffers = &CommandBuffers[nextImageIndex];
vsi.signalSemaphoreCount = 0;
vsi.pSignalSemaphores = (VkSemaphore) nullptr;

result = vkQueueSubmit(presentQueue, 1, IN &vsi, IN renderFence);

. . .

result = vkWaitForFences(LogicalDevice, 1, IN &renderFence, VK_TRUE, UINT64_MAX);

. . .

result = vkQueuePresentKHR(presentQueue, IN &vpi); // don’t present the image until done rendering

mjb – February 26, 2023
Computer Graphics

10

• Events provide even finer-grained synchronization.

• Events are a primitive that can be signaled by the host or the device.

• Can even signal at one place in the pipeline and wait for it at another place in the pipeline.

• Signaling in the pipeline means “signal me as the last piece of this draw command passes
that point in the pipeline”.

• You can signal, un-signal, or test from a vk function or from a vkCmd function.

• Can wait from a vkCmd function.

Events

mjb – February 26, 2023
Computer Graphics

11Controlling Events from the Host

VkEventCreateInfo veci;
veci.sType = VK_STRUCTURE_TYPE_EVENT_CREATE_INFO;
veci.pNext = nullptr;
veci.flags = 0;

VkEvent event;
result = vkCreateEvent(LogicalDevice, IN &veci, PALLOCATOR, OUT &event);

result = vkSetEvent(LogicalDevice, IN event);

result = vkResetEvent(LogicalDevice, IN event);

result = vkGetEventStatus(LogicalDevice, IN event);
// result = VK_EVENT_SET: signaled
// result = VK_EVENT_RESET: not signaled

Note: the host cannot block waiting for an event, but it can test for it

mjb – February 26, 2023
Computer Graphics

12Controlling Events from the Device

result = vkCmdSetEvent(CommandBuffer, IN event, pipelineStageBits);

result = vkCmdResetEvent(CommandBuffer, IN event, pipelineStageBits);

result = vkCmdWaitEvents(CommandBuffer, 1, &event,

srcPipelineStageBits, dstPipelineStageBits,

memoryBarrierCount, pMemoryBarriers,
bufferMemoryBarrierCount, pBufferMemoryBarriers,
imageMemoryBarrierCount, pImageMemoryBarriers

);

Note: the device cannot test for an event, but it can block

Could be an
array of events

Memory barriers get executed
after events have been signaled

Where signaled, where wait
for the signal

7 8

9 10

11 12

