Vulisan.

Antialiasing and Multisampling

OregonState
University
Mike Bailey
mjb@cs.oregonstate.edu
This work is licensed under a Creative Commons
This work is licensed under a Creative Commo
Attribution-NonCommercial-NoDerivatives 4.0
Attribution-NonComm

The Nyquist Criterion

"The Nyquist [sampling] rate is twice the-maximum component frequencyof

Oregon State
University
Computer Graphics

MultiSampling

Oversampling is a computer graphics technique to improve the quality of your output image by looking inside every pixel to see what the rendering is doing there.

There are two approaches to this:

1. Supersampling: Pick some number of sub-pixels within that pixel that pass the depth and stencil tests. Render the image at each of these sub-pixels..

2. Multisampling: Pick some number of sub-pixels within that pixel that pass the depth and stencil tests. If any of them pass, then perform a single color render for the one pixel and assign that single color to all the sub-pixels that passed the depth and stencil tests.

Computer Graphics

The final step will be to average those sub-pixels' colors to produce one final color for this whole pixel. This is called resolving the pixel.

Vulkan Specification Distribution of Sampling Points within a Pixel

VK_SAMPLE_COUNT_2_BIT	VK_SAMPLE_COUNT_4_BIT	VK_SAMPLE_COUNT_8_BIT	VK_SAMPLE_COUNT_16_BIT
	$(0.375,0.125)$	$(0.5625,0.3125)$	$(0.5625,0.5625)$
		$(0.4375,0.6875)$	$(0.4375,0.3125)$
$(0.25,0.25)$		$(0.8125,0.5625)$	$(0.75,0.4375)$
	$(0.875,0.375)$	$(0.1875,0.375)$	
		$(0.3125,0.1875)$	$(0.625,0.8125)$
$(0.75,0.75)$	$(0.125,0.625)$	$(0.1875,0.8125)$	$(0.8125,0.6875)$
		$(0.0625,0.4375)$	$(0.6875,0.1875)$
		$(0.6875,0.9375)$	$(0.5,0.0625)$
		$(0.9375,0.0625)$	$(0.25,0.125)$
			$(0.125,0.75)$

Computer Graphics
mib - December 31, 2022

Consider Two Triangles That Pass Through the Same Pixel

Let's assume (for now) that the two
triangles don't overlap - that is, they
look this way because they butt up

Consider Two Triangles Who Pass Through the Same Pixel

Let's assume (for now) that the two triangles don't overlap - that is, they look this way because they butt up against each other.

Number of Fragment Shader Calls

	Multisampling	Supersampling
Blue fragment shader calls	1	5
Red fragment shader calls	1	3

Consider Two Triangles Who Pass Through the Same Pixel

Q: What if the blue triangle
completely filled the pixel when it was drawn, and then the red one, which is closer to the viewer than the blue one, came along and partially filled the pixel?

Oregon State University Computer Graphics

A: The ideas are all still the same, but the blue one had to deal with 8 sub-pixels (instead of 5 like before). But, the red triangle came along and obsoleted 3 of those blue sub-pixels. Note that the "resolved" image will still turn out the same as before.

What if the blue triangle completely filled the pixel when it was drawn, and then the red one, which is closer to the viewer than the blue one, came along and partially filled the pixel?

	Number of Fragment Shader Calls	
	1	Supersampling
Blue fragment shader calls	1	8
Red fragment shader calls	3	

