









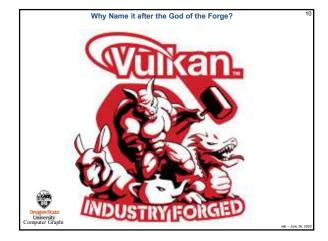



| NVidia Titan V Spe                                                                                                                                                                                                                         | cs vs. Tit                                                                | an Xp, 108                                                                        | 0 TI                                                                                                                           |                                                                                |                                                                                                                                                |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                                                                                                                                                            |                                                                           |                                                                                   |                                                                                                                                |                                                                                |                                                                                                                                                |       |
|                                                                                                                                                                                                                                            | Titan V                                                                   | Tesla V100                                                                        | Testa P100                                                                                                                     | GTX 1000 Ti                                                                    | GTX 1080                                                                                                                                       |       |
| GPU (                                                                                                                                                                                                                                      | GV100                                                                     | GV100                                                                             | GP100 Cut Down Pascal                                                                                                          | <b>GP102</b> Paiscal                                                           | GP104-400 Pascal                                                                                                                               |       |
| Transistor Count                                                                                                                                                                                                                           |                                                                           | 21,18                                                                             |                                                                                                                                |                                                                                |                                                                                                                                                |       |
| Fab Process                                                                                                                                                                                                                                | 12mm FFN                                                                  | 12mm FFN                                                                          | 10mm FinFET                                                                                                                    | 16nm FinFET                                                                    | Kirvin FiniFET                                                                                                                                 |       |
| CUDA Cores / Tensor Cores                                                                                                                                                                                                                  | 5120/640                                                                  | 5120/640                                                                          | 358470                                                                                                                         | 358470                                                                         | 2560/0                                                                                                                                         |       |
| TMUS                                                                                                                                                                                                                                       |                                                                           |                                                                                   |                                                                                                                                |                                                                                |                                                                                                                                                |       |
| 80P1                                                                                                                                                                                                                                       |                                                                           |                                                                                   |                                                                                                                                |                                                                                |                                                                                                                                                |       |
| Core Clock                                                                                                                                                                                                                                 | 1200MHz                                                                   |                                                                                   | 1329MHz                                                                                                                        |                                                                                | 1607MHz                                                                                                                                        |       |
| Boost Clock                                                                                                                                                                                                                                | 1455MHz                                                                   | 1370MHz                                                                           | 1400MHz                                                                                                                        | 1600MHz                                                                        | 1733MHz                                                                                                                                        |       |
| FP32 TFLOPs                                                                                                                                                                                                                                | 15TFLOPs                                                                  | HITFLOPS                                                                          | 10.6TFLOPs                                                                                                                     | -11.4TFLOPs                                                                    |                                                                                                                                                |       |
| Memory Type                                                                                                                                                                                                                                | HEMZ                                                                      | HBM2                                                                              | HBM2                                                                                                                           | GODRSX                                                                         | GODRSX                                                                                                                                         |       |
| Memory Capacity                                                                                                                                                                                                                            | 1208                                                                      | 1608                                                                              | 1008                                                                                                                           |                                                                                |                                                                                                                                                |       |
| Memory Clock                                                                                                                                                                                                                               | 1.7Gtps HBM2                                                              | 1.75Clops HEM2                                                                    |                                                                                                                                | 11Gbps                                                                         | 10Gbps GODRSX                                                                                                                                  |       |
| Mamory Interface                                                                                                                                                                                                                           | 3072.64                                                                   | 4096-bit                                                                          | 4095-bit                                                                                                                       | 352-bit                                                                        | 256-64                                                                                                                                         |       |
| Memory Bandwidth                                                                                                                                                                                                                           | 65308/s                                                                   | 900GB/s                                                                           |                                                                                                                                | -40408s                                                                        | 320 32GE/s                                                                                                                                     |       |
| Total Power Budget ("TDP")                                                                                                                                                                                                                 | 250W                                                                      | 250W                                                                              | 300W                                                                                                                           | 250N                                                                           | 192W                                                                                                                                           |       |
| Power Connectors                                                                                                                                                                                                                           | 1x 8-pin<br>1x 6-pin                                                      |                                                                                   |                                                                                                                                | tic 8-pin<br>tic 6-pin                                                         | tx 8-pin                                                                                                                                       |       |
| Release Date                                                                                                                                                                                                                               | 12/07/2017                                                                |                                                                                   | 4Q16-1Q17                                                                                                                      |                                                                                | 5/27/2016                                                                                                                                      |       |
| Release Price                                                                                                                                                                                                                              | \$3000                                                                    | \$10000                                                                           |                                                                                                                                |                                                                                | Reference: \$700<br>MSRP: \$600<br>Now: \$500                                                                                                  |       |
| The mildia Titan V graphics care<br>however, mean that the card is it<br>The Tate V is a derivative of the<br>V ships at \$3000, whereas the<br>capacity by 4GB – 1608 HBM2<br>matched. Core count, for one, in<br>workloads) on each CPU. | ncapable of gam<br>earlier released<br>issla V100 was a<br>versus 12GB HB | ing, nor does it me<br>GV100 GPU, part<br>valiable as part of<br>M2 – and has a w | san that we can't extrapolate<br>of the Tesila accelerator can<br>a \$10,000 developer kit. The<br>der memory interface, but o | future key perfo<br>t series. The key<br>Tesla V100 still<br>ther core feature | oplications. That does not,<br>mance metrics for Volta.<br>differentiator is that the Ti<br>offers greater memory<br>es remain matched or near | Titan |



### From WikiPedia:

T


University mputer Graphics

"Vulcan is the god of fire including the fire of volcances, metalworking, and the forge in ancient Roman religion and myth. Vulcan is often depicted with a blacksmith's hammer. The **Vulcanalia** was the annual festival held August 23 in his honor. His Greek counterpart is Hephaestus, the god of fire and smithery. In Eruscan religion, he is identified with Sethlans. Vulcan belongs to the most ancient stage of Roman religion: Varro, the ancient Roman scholar and writer, citing the Annales Maximi, records that king Titus Tatius dedicated altars to a series of detiles among which Vulcan is mentioned."



https://en.wikipedia.org/wiki/Vulcan\_(mythology)

Who is the Khronos Group? The Khronos Group, Inc. is a non-profit member-funded industry consortium, focused on the creation of open standard, royalty-free application programming interfaces (APIs) for authoring and accelerated playback of dynamic media on a wide variety of platforms and devices. Khronos members may contribute to the development of Khronos API specifications, vote at various stages before public deployment, and accelerate delivery of their platforms and applications through early access to specification drafts and conformance tests. NNEF COLLADA. DataFormat EGL (OTF OpenGL|ES.) OpenGL SC. OpenVG. OpenGL 11/2 SYCL. Vulkan.) WebGL. University mouter Graphics

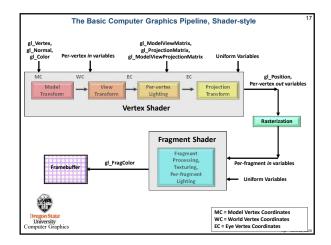


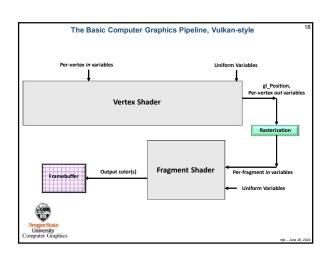


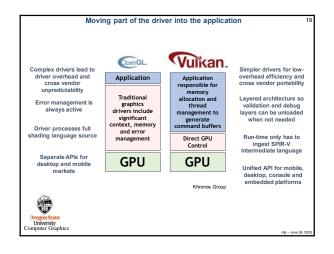


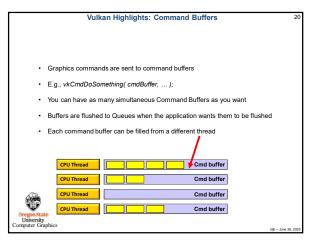
# Vulkan

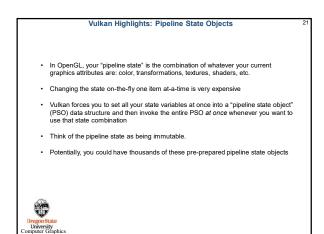

- Originally derived from AMD's Mantle API
- Also heavily influenced by Apple's Metal API and Microsoft's DirectX 12
- + Goal: much less driver complexity and overhead than  $\ensuremath{\mathsf{OpenGL}}\xspace$  has
- · Goal: much less user hand-holding
- · Goal: higher single-threaded performance than OpenGL can deliver
- · Goal: able to do multithreaded graphics
- · Goal: able to handle tiled rendering

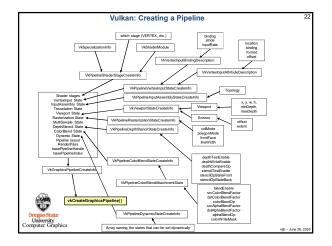


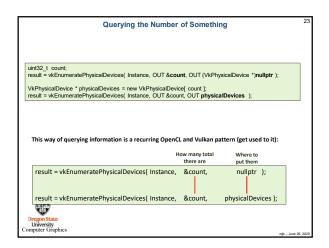


#### Vulkan Differences from OpenGL

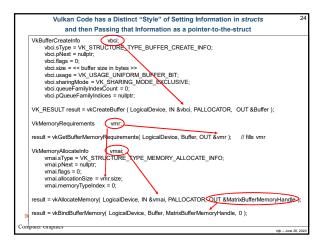

- More low-level information must be provided (by you!) in the application, rather than the driver
- Screen coordinate system is Y-down
- · No "current state", at least not one maintained by the driver
- All of the things that we have talked about being deprecated in OpenGL are really deprecated in Vulkan: built-in pipeline transformations, begin-end, fixed-function, etc.
- You must manage your own transformations.
- All transformation, color and texture functionality must be done in shaders.
- Shaders are pre-"half-compiled" outside of your application. The compilation
  process is then finished during the runtime pipeline-building process.

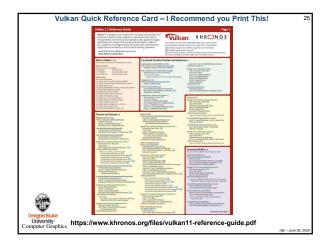

   Drows State
  University
  Organises



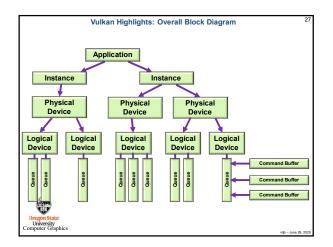



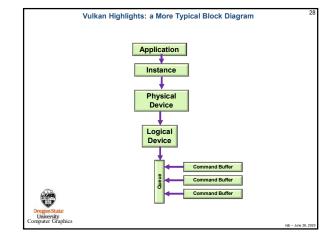



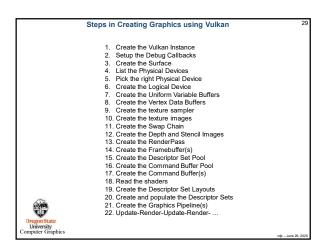



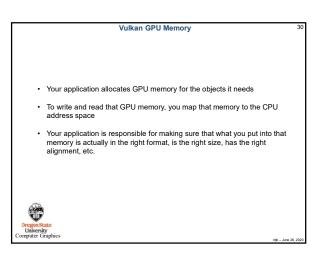

















## Vulkan Render Passes

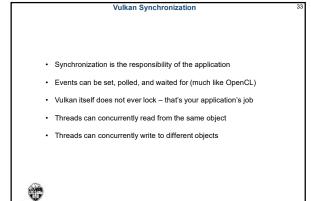
· Drawing is done inside a render pass

T

Oregon State University mputer Graphics

Oregon State University omputer Graphics

- · Each render pass contains what framebuffer attachments to use
- · Each render pass is told what to do when it begins and ends


### Vulkan Compute Shaders

- · Compute pipelines are allowed, but they are treated as something special (just like OpenGL treats them)
- Compute passes are launched through dispatches

T

Oregon State University omputer Graphic

· Compute command buffers can be run asynchronously



Vulkan Shaders · GLSL is the same as before ... almost For places it's not, an implied #define VULKAN 100 is automatically supplied by the compiler · You pre-compile your shaders with an external compiler Your shaders get turned into an intermediate form known as SPIR-V (Standard Portable Intermediate Representation for Vulkan) · SPIR-V gets turned into fully-compiled code at runtime The SPIR-V spec has been public for years -new shader languages are surely being developed · OpenCL and OpenGL have adopted SPIR-V as well External GLSL Compiler in driver Vendor-specific code GLSL Source SPIR-V -Compiler Run Time Develop Time Advantages: Software vendors don't need to ship their shader source Software can launch faster because half of the compilation has already taken place This guarantees a common front-end syntax This allows for other language front-ends

- 1. 2. 3. 4.

| This PC > mjb (\\guille\bailey\users | (11) > Vulkan > Sample2019 > |                     | ✓ <sup>™</sup> Search Se |   |
|--------------------------------------|------------------------------|---------------------|--------------------------|---|
| Name                                 | Date modified                | Туре                | Size                     |   |
| 15                                   | 9/4/2019 2:34 PM             | File folder         |                          |   |
| * Debug                              | 9/4/2019 2:49 PM             | File folder         |                          |   |
| alm gim                              | 9/4/2019 2:34 PM             | File folder         |                          |   |
| # glm.0.9.8.5                        | 9/4/2019 2:34 PM             | File folder         |                          |   |
| # gim-0.9.9-a2                       | 9/4/2019 2:34 PM             | File folder         |                          |   |
| ERRORS.pets                          | 6/25/2018 10:46 AM           | Microsoft PowerP    | 789 KB                   | 1 |
| R frag.sov                           | 1/10/2018 9:07 AM            | SPV File            | 2 KB                     | 1 |
| B glfw3.h                            | 12/26/2017 10:48 AM          | C/C++ Header        | 149 KB                   | 1 |
| Hit offw3.6b                         | 8/18/2016 5:06 AM            | Object File Library | 240 KB                   | 1 |
| gislangValidator                     | 12/31/2017 5:24 PM           | File                | 1,817 KB                 | 1 |
| I gislangValidator.exe               | 6/15/2017 12:33 PM           | Application         | 1,633 KB                 | 1 |
| alslangValidator.help                | 10/6/2017 2:31 PM            | HELP File           | 6 KB                     |   |
| Makefile                             | 1/31/2018 11:41 AM           | File                | 1.68                     |   |
| <br>a puppy timp                     | 1/10/2018 8:13 AM            | BMP File            | 3,073 KB                 |   |
| <br>Puppy ipg                        | 1/10/2018 @13 AM             | PG File             | 443 KB                   |   |
| puppy0.bmp                           | 1/1/2018 9:57 AM             | BMP File            | 3.073 KB                 |   |
| puppy0.jpg                           | 1/1/2018 9:58 AM             | JPG File            | 455 KB                   |   |
| *+ sample.cop                        | 9/4/2019 2/49 PM             | C++ Source          | 138 KB                   |   |
| *+ sample.save.cop                   | 3/1/2018 12:46 PM            | C++ Source          | 135 KB                   |   |
| ST Sample.sin                        | 12/27/2017 9:45 AM           | Microsoft Visual S  | 2.108                    |   |
| Sample.vcsproj                       | 9/4/2019 2:37 PM             | VC++ Project        | 7 KB                     | 1 |
| Sample.vcsproj.filters               | 12/27/2017 9:47 AM           | VC++ Project Filte. | 1 KB                     | 1 |
| Sample.vcxproj.user                  | 6/29/2018 9:49 AM            | Per-User Project O. | 1.68                     |   |
| T sample08.pdf                       | 1/9/2018 11:28 AM            | Adobe Acrobat D     | 84 KB                    | 1 |
| T sample09.pdf                       | 1/9/2018 11:28 AM            | Adobe Acrobst D.,   | 89 KB                    |   |
| sample10.pdf                         | 1/9/2018 11:26 AM            | Adobe Acrobat D     | 94 KB                    | 1 |
| ample-comp.comp                      | 2/14/2018 12:25 PM           | COMP File           | 2 KB                     | 1 |
| a sample-comp.spv                    | 2/14/2018 12-25 PM           | SPV File            | 4 KB                     | 1 |
| sample-frag.frag                     | 2/18/2018 10:52 AM           | FRAG File           | 2 KB                     |   |