
mjb – June 26, 2020
Computer Graphics

1

Intro.pptx

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

Introduction

mjb – June 26, 2020
Computer Graphics

2Acknowledgements

First of all, thanks to the inaugural class of 19
students who braved new, unrefined, and just-
in-time course materials to take the first
Vulkan class at Oregon State University –
Winter Quarter, 2018. Thanks for your
courage and patience!

Third, thanks to the Khronos Group for the
great laminated Vulkan Quick Reference
Cards! (Look at those happy faces in the
photo holding them.)

Ali Alsalehy
Natasha Anisimova
Jianchang Bi
Christopher Cooper
Richard Cunard
Braxton Cuneo
Benjamin Fields
Trevor Hammock
Zach Lerew
Victor Li

Alan Neads
Raja Petroff
Bei Rong
Lawrence Roy
Lily Shellhammer
Hannah Solorzano
Jian Tang
Glenn Upthagrove
Logan Wingard

Second, thanks to NVIDIA for all
of their support!

mjb – June 26, 2020
Computer Graphics

3

2004: OpenGL 2.0 / GLSL 1.10 includes Vertex and Fragment Shaders

History of Shaders

2008: OpenGL 3.0 / GLSL 1.30 adds features left out before

2010: OpenGL 3.3 / GLSL 3.30 adds Geometry Shaders

2010: OpenGL 4.0 / GLSL 4.00 adds Tessellation Shaders

2017: OpenGL 4.6 / GLSL 4.60

There is lots more detail at:

https://www.khronos.org/opengl/wiki/History_of_OpenGL

2012: OpenGL 4.3 / GLSL 4.30 adds Compute Shaders

mjb – June 26, 2020
Computer Graphics

4

2014: Khronos starts Vulkan effort

History of Shaders

2016: Vulkan 1.0

There is lots more detail at:

https://en.wikipedia.org/wiki/Vulkan_(API)

2016: Vulkan 1.1

2020: Vulkan 1.2

mjb – June 26, 2020
Computer Graphics

5Everything You Need to Know is Right Here … Somewhere

mjb – June 26, 2020
Computer Graphics

6Top Three Reasons that Prompted the Development of Vulkan

1. Performance

2. Performance

3. Performance

Vulkan is better at keeping the GPU busy than OpenGL is. OpenGL drivers need
to do a lot of CPU work before handing work off to the GPU. Vulkan lets you get
more power from the GPU card you already have.

This is especially important if you can hide the complexity of Vulkan from your
customer base and just let them see the improved performance. Thus, Vulkan
has had a lot of support and interest from game engine developers, 3rd party
software vendors, etc.

As an aside, the Vulkan development effort was originally called “glNext”, which
created the false impression that this was a replacement for OpenGL. It’s not.

mjb – June 26, 2020
Computer Graphics

7OpenGL 4.2 Pipeline Flowchart

mjb – June 26, 2020
Computer Graphics

8Why is it so important to keep the GPU Busy?

mjb – June 26, 2020
Computer Graphics

9

“Vulcan is the god of fire including the fire of volcanoes,
metalworking, and the forge in ancient Roman religion and myth.
Vulcan is often depicted with a blacksmith's hammer. The
Vulcanalia was the annual festival held August 23 in his honor.
His Greek counterpart is Hephaestus, the god of fire and
smithery. In Etruscan religion, he is identified with Sethlans.
Vulcan belongs to the most ancient stage of Roman religion:
Varro, the ancient Roman scholar and writer, citing the Annales
Maximi, records that king Titus Tatius dedicated altars to a series
of deities among which Vulcan is mentioned.”

From WikiPedia:

https://en.wikipedia.org/wiki/Vulcan_(mythology)

Who was the original Vulcan?

mjb – June 26, 2020
Computer Graphics

10Why Name it after the God of the Forge?

mjb – June 26, 2020
Computer Graphics

11

The Khronos Group, Inc. is a non-profit member-funded industry
consortium, focused on the creation of open standard, royalty-free
application programming interfaces (APIs) for authoring and accelerated
playback of dynamic media on a wide variety of platforms and devices.
Khronos members may contribute to the development of Khronos API
specifications, vote at various stages before public deployment, and
accelerate delivery of their platforms and applications through early
access to specification drafts and conformance tests.

Who is the Khronos Group?

mjb – June 26, 2020
Computer Graphics

12Playing “Where’s Waldo” with Khronos Membership

mjb – June 26, 2020
Computer Graphics

13Who’s Been Specifically Working on Vulkan?

mjb – June 26, 2020
Computer Graphics

14Vulkan

• Originally derived from AMD’s Mantle API

• Also heavily influenced by Apple’s Metal API and Microsoft’s DirectX 12

• Goal: much less driver complexity and overhead than OpenGL has

• Goal: much less user hand-holding

• Goal: higher single-threaded performance than OpenGL can deliver

• Goal: able to do multithreaded graphics

• Goal: able to handle tiled rendering

mjb – June 26, 2020
Computer Graphics

15Vulkan Differences from OpenGL

• More low-level information must be provided (by you!) in the application, rather
than the driver

• Screen coordinate system is Y-down

• No “current state”, at least not one maintained by the driver

• All of the things that we have talked about being deprecated in

OpenGL are really deprecated in Vulkan: built-in pipeline
transformations, begin-end, fixed-function, etc.

• You must manage your own transformations.

• All transformation, color and texture functionality must be done in shaders.

• Shaders are pre-”half-compiled” outside of your application. The compilation
process is then finished during the runtime pipeline-building process.

mjb – June 26, 2020
Computer Graphics

16The Basic OpenGL Computer Graphics Pipeline, OpenGL-style

Model
Transform

View
Transform

Projection
Transform

Fragment
Processing,
Texturing,

Per-fragment
Lighting

Per-vertex
Lighting

Rasterization

ECWC

Vertex,
Normal,

Color

EC

MC = Model Vertex Coordinates
WC = World Vertex Coordinates
EC = Eye Vertex Coordinates

Framebuffer

MC

mjb – June 26, 2020
Computer Graphics

17The Basic Computer Graphics Pipeline, Shader-style

Model
Transform

View
Transform

Projection
Transform

Fragment
Processing,
Texturing,

Per-fragment
Lighting

Per-vertex
Lighting

Rasterization

ECWC

gl_Vertex,
gl_Normal,

gl_Color

EC

MC = Model Vertex Coordinates
WC = World Vertex Coordinates
EC = Eye Vertex Coordinates

Per-vertex in variables Uniform Variables

Framebuffer
gl_FragColor

gl_Position,
Per-vertex out variables

Per-fragment in variables

Uniform Variables

gl_ModelViewMatrix,
gl_ProjectionMatrix,

gl_ModelViewProjectionMatrix

MC

Vertex Shader

Fragment Shader

mjb – June 26, 2020
Computer Graphics

18The Basic Computer Graphics Pipeline, Vulkan-style

Rasterization

Per-vertex in variables Uniform Variables

Framebuffer
Output color(s)

gl_Position,
Per-vertex out variables

Per-fragment in variables

Uniform Variables

Vertex Shader

Fragment Shader

mjb – June 26, 2020
Computer Graphics

19

GPU

Traditional
graphics

drivers include
significant

context, memory
and error

management

Application

GPU

Direct GPU
Control

Application
responsible for

memory
allocation and

thread
management to

generate
command buffers

Separate APIs for
desktop and mobile

markets Unified API for mobile,
desktop, console and
embedded platforms

Error management is
always active

Layered architecture so
validation and debug

layers can be unloaded
when not needed

Driver processes full
shading language source Run-time only has to

ingest SPIR-V
intermediate language

Complex drivers lead to
driver overhead and

cross vendor
unpredictability

Simpler drivers for low-
overhead efficiency and
cross vendor portability

Moving part of the driver into the application

Khronos Group

mjb – June 26, 2020
Computer Graphics

20Vulkan Highlights: Command Buffers

• Graphics commands are sent to command buffers

• E.g., vkCmdDoSomething(cmdBuffer, …);

• You can have as many simultaneous Command Buffers as you want

• Buffers are flushed to Queues when the application wants them to be flushed

• Each command buffer can be filled from a different thread

CPU Thread

CPU Thread

CPU Thread

CPU Thread

Cmd buffer

Cmd buffer

Cmd buffer

Cmd buffer

mjb – June 26, 2020
Computer Graphics

21Vulkan Highlights: Pipeline State Objects

• In OpenGL, your “pipeline state” is the combination of whatever your current
graphics attributes are: color, transformations, textures, shaders, etc.

• Changing the state on-the-fly one item at-a-time is very expensive

• Vulkan forces you to set all your state variables at once into a “pipeline state object”
(PSO) data structure and then invoke the entire PSO at once whenever you want to
use that state combination

• Think of the pipeline state as being immutable.

• Potentially, you could have thousands of these pre-prepared pipeline state objects

mjb – June 26, 2020
Computer Graphics

22

VkGraphicsPipelineCreateInfo

Shader stages
VertexInput State

InputAssembly State
Tesselation State

Viewport State
Rasterization State
MultiSample State
DepthStencil State
ColorBlend State
Dynamic State
Pipeline layout
RenderPass

basePipelineHandle
basePipelineIndex

VkPipelineShaderStageCreateInfo

VkPipelineVertexInputStateCreateInfo

VkVertexInputBindingDescription

VkViewportStateCreateInfo Viewport
x, y, w, h,
minDepth,
maxDepth

offset
extent

Scissor
VkPipelineRasterizationStateCreateInfo

cullMode
polygonMode

frontFace
lineWidth

VkSpecializationInfo

which stage (VERTEX, etc.)

VkShaderModule

VkPipelineInputAssemblyStateCreateInfo

Topology

VkVertexInputAttributeDescription

binding
stride

inputRate location
binding
format
offset

VkPipelineDepthStencilStateCreateInfo

VkPipelineColorBlendStateCreateInfo
depthTestEnable
depthWriteEnable
depthCompareOp
stencilTestEnable

stencilOpStateFront
stencilOpStateBack

blendEnable
srcColorBlendFactor
dstColorBlendFactor

colorBlendOp
srcAlphaBlendFactor
dstAlphaBlendFactor

alphaBlendOp
colorWriteMask

VkPipelineColorBlendAttachmentState

Vulkan: Creating a Pipeline

VkPipelineDynamicStateCreateInfo

vkCreateGraphicsPipeline()

Array naming the states that can be set dynamically

mjb – June 26, 2020
Computer Graphics

23

uint32_t count;
result = vkEnumeratePhysicalDevices(Instance, OUT &count, OUT (VkPhysicalDevice *)nullptr);

VkPhysicalDevice * physicalDevices = new VkPhysicalDevice[count];
result = vkEnumeratePhysicalDevices(Instance, OUT &count, OUT physicalDevices);

result = vkEnumeratePhysicalDevices(Instance, &count, nullptr);

result = vkEnumeratePhysicalDevices(Instance, &count, physicalDevices);

Where to
put them

How many total
there are

Querying the Number of Something

This way of querying information is a recurring OpenCL and Vulkan pattern (get used to it):

mjb – June 26, 2020
Computer Graphics

24

VkBufferCreateInfo vbci;
vbci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
vbci.pNext = nullptr;
vbci.flags = 0;
vbci.size = << buffer size in bytes >>
vbci.usage = VK_USAGE_UNIFORM_BUFFER_BIT;
vbci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
vbci.queueFamilyIndexCount = 0;
vbci.pQueueFamilyIndices = nullptr;

VK_RESULT result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &Buffer);

VkMemoryRequirements vmr;

result = vkGetBufferMemoryRequirements(LogicalDevice, Buffer, OUT &vmr); // fills vmr

VkMemoryAllocateInfo vmai;
vmai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
vmai.pNext = nullptr;
vmai.flags = 0;
vmai.allocationSize = vmr.size;
vmai.memoryTypeIndex = 0;

result = vkAllocateMemory(LogicalDevice, IN &vmai, PALLOCATOR, OUT &MatrixBufferMemoryHandle);

result = vkBindBufferMemory(LogicalDevice, Buffer, MatrixBufferMemoryHandle, 0);

Vulkan Code has a Distinct “Style” of Setting Information in structs

and then Passing that Information as a pointer-to-the-struct

mjb – June 26, 2020
Computer Graphics

25Vulkan Quick Reference Card – I Recommend you Print This!

https://www.khronos.org/files/vulkan11-reference-guide.pdf

mjb – June 26, 2020
Computer Graphics

26Vulkan Quick Reference Card

https://www.khronos.org/files/vulkan11-reference-guide.pdf

mjb – June 26, 2020
Computer Graphics

27

Application

Vulkan Highlights: Overall Block Diagram

Instance Instance

Physical
Device

Physical
Device

Physical
Device

Logical
Device

Logical
Device

Logical
Device

Logical
Device

Logical
Device

Q
u

e
u

e

Q
u

e
u

e

Q
u

e
u

e

Q
u

e
u

e

Q
u

e
u

e

Q
u

e
u

e

Q
u

e
u

e

Q
u

e
u

e

Q
u

e
u

e

Command Buffer

Command Buffer

Command Buffer

mjb – June 26, 2020
Computer Graphics

28

Application

Vulkan Highlights: a More Typical Block Diagram

Instance

Physical
Device

Logical
Device

Q
u

e
u

e

Command Buffer

Command Buffer

Command Buffer

mjb – June 26, 2020
Computer Graphics

29Steps in Creating Graphics using Vulkan

1. Create the Vulkan Instance
2. Setup the Debug Callbacks
3. Create the Surface
4. List the Physical Devices
5. Pick the right Physical Device
6. Create the Logical Device
7. Create the Uniform Variable Buffers
8. Create the Vertex Data Buffers
9. Create the texture sampler
10. Create the texture images
11. Create the Swap Chain
12. Create the Depth and Stencil Images
13. Create the RenderPass
14. Create the Framebuffer(s)
15. Create the Descriptor Set Pool
16. Create the Command Buffer Pool
17. Create the Command Buffer(s)
18. Read the shaders
19. Create the Descriptor Set Layouts
20. Create and populate the Descriptor Sets
21. Create the Graphics Pipeline(s)
22. Update-Render-Update-Render- …

mjb – June 26, 2020
Computer Graphics

30Vulkan GPU Memory

• Your application allocates GPU memory for the objects it needs

• To write and read that GPU memory, you map that memory to the CPU
address space

• Your application is responsible for making sure that what you put into that
memory is actually in the right format, is the right size, has the right
alignment, etc.

mjb – June 26, 2020
Computer Graphics

31Vulkan Render Passes

• Drawing is done inside a render pass

• Each render pass contains what framebuffer attachments to use

• Each render pass is told what to do when it begins and ends

mjb – June 26, 2020
Computer Graphics

32Vulkan Compute Shaders

• Compute pipelines are allowed, but they are treated as something
special (just like OpenGL treats them)

• Compute passes are launched through dispatches

• Compute command buffers can be run asynchronously

mjb – June 26, 2020
Computer Graphics

33Vulkan Synchronization

• Synchronization is the responsibility of the application

• Events can be set, polled, and waited for (much like OpenCL)

• Vulkan itself does not ever lock – that’s your application’s job

• Threads can concurrently read from the same object

• Threads can concurrently write to different objects

mjb – June 26, 2020
Computer Graphics

34Vulkan Shaders

• GLSL is the same as before … almost

• For places it’s not, an implied
#define VULKAN 100

is automatically supplied by the compiler

• You pre-compile your shaders with an external compiler

• Your shaders get turned into an intermediate form known as SPIR-V (Standard
Portable Intermediate Representation for Vulkan)

• SPIR-V gets turned into fully-compiled code at runtime

• The SPIR-V spec has been public for years –new shader languages are surely being
developed

• OpenCL and OpenGL have adopted SPIR-V as well

External
GLSL

Compiler
GLSL Source SPIR-V

Vendor-specific
code

Compiler in
driver

1. Software vendors don’t need to ship their shader source
2. Software can launch faster because half of the compilation has already taken place
3. This guarantees a common front-end syntax
4. This allows for other language front-ends

Advantages:
Develop Time

Run Time

mjb – June 26, 2020
Computer Graphics

35Your Sample2019.zip File Contains This

The “19” refers to the version of Visual Studio, not the year of development.

