Vulikan.

GLM

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

OregonState

University
Computer Graphics

GLM is a set of C++ classes and functions to fill in the programming gaps in writing the basic vector and matrix mathematics for OpenGL applications. However, even though it was written for OpenGL, it works fine with Vulkan.

Even though GLM looks like a library, it actually isn't - it is all specified in
*.hpp header files so that it gets compiled in with your source code.
You can find it at:
http://gIm.g-truc.net/0.9.8.5/

You invoke GLM like this:
\#define GLM_FORCE_RADIANS
\#include <glm/glm.hpp>
\#include <glm/gtc/matrix_transform.hpp>
OpenGL treats all angles as given in degrees. This line forces GLM to treat all angles as given in radians. Trecommend this so that all angles you create in all programming will be in radians.
\#include <glm/gtc/matrix_inverse.hpp>

If GLM is not installed in a system place, put it somewhere you can get access to. Later on, these notes will show you how to use it from there.

All of the things that we have talked about being deprecated in OpenGL are really deprecated in Vulkan -- built-in pipeline transformations, begin-end, fixed-function, etc. So, where you might have said in OpenGL:

```
gIMatrixMode( GL_MODELVIEW );
glLoadIdentity( );
gluLookAt( 0., 0., 3., 0., 0., 0., 0., 1., 0. );
gIRotatef( (GLfloat)Yrot, 0., 1., 0. );
gIRotatef( (GLfloat)Xrot, 1., 0., 0. );
gIScalef( (GLfloat)Scale, (GLfloat)Scale, (GLfloat)Scale );
```

you would now say:
glm::mat4 modelview = glm::mat4(1.); // identity
glm::vec3 eye(0.,0.,3.);
glm::vec3 look(0.,0.,0.);
glm::vec3 up(0.,1.,0.);
modelview = glm::lookAt(eye, look, up); $\quad / /\left\{x^{\prime}, y^{\prime}, z^{\prime}\right\}=[v]^{*}\{x, y, z\}$
modelview = glm::rotate(modelview, D2R*Yrot, glm::vec3(0.,1.,0.)); // \{x', $\left.y^{\prime}, z^{\prime}\right\}=[v]^{*}[y r]^{*}\{x, y, z\}$
modelview = glm::rotate(modelview, D2R*Xrot, glm::vec3(1.,0.,0.)); // \{x', $\left.y^{\prime}, z^{\prime}\right\}=[v]^{*}[y r]^{*}[x r]^{*}\{x, y, z\}$
modelview = glm::scale(modelview, glm::vec3(Scale,Scale,Scale)); // \{ $\left.x^{\prime}, y^{\prime}, z^{\prime}\right\}=[v]^{*}[y r]^{*}[x r]^{*}[s]^{*}\{x, y, z\}$
This is exactly the same concept as OpenGL, but a different expression of it. Read on for details ...

// constructor:

glm::mat4(1.); // identity matrix
glm::vec4();
glm::vec3();
GLM recommends that you use the "glm::" syntax and avoid "using namespace" syntax because they have not made any effort to create unique function names
// multiplications:
glm::mat4 * glm::mat4
glm::mat4 * glm::vec4
glm::mat4 * glm::vec4(glm::vec3, 1.) // promote a vec3 to a vec4 via a constructor
// emulating OpenGL transformations with concatenation:
glm::mat4 glm::rotate(glm::mat4 const \& m, float angle, glm::vec3 const \& axis);
glm::mat4 glm::scale(glm::mat4 const \& m, glm::vec3 const \& factors);
glm::mat4 glm::translate(glm::mat4 const \& m, glm::vec3 const \& translation);

```
// viewing volume (assign, not concatenate):
glm::mat4 glm::ortho( float left, float right, float bottom, float top, float near, float far );
glm::mat4 glm::ortho( float left, float right, float bottom, float top );
glm::mat4 glm::frustum( float left, float right, float bottom, float top, float near, float far );
glm::mat4 glm::perspective( float fovy, float aspect, float near, float far);
// viewing (assign, not concatenate):
glm::mat4 glm::lookAt( glm::vec3 const & eye, glm::vec3 const & look, glm::vec3 const & up );
```

I like to just put the whole thing under my Visual Studio project folder so I can zip up a complete project and give it to someone else.

University
Computer Graphics

A period, indicating that the project folder should also be searched when a \#include <xxx>
is encountered. If you put it somewhere else enter that full or relative path instead.


```
if( UseMouse )
{
    if( Scale < MINSCALE )
        Scale = MINSCALE;
    Matrices.uModeIMatrix = glm::mat4( 1. ); // identity
    Matrices.uModelMatrix = glm::rotate( Matrices.uModelMatrix, Yrot, glm::vec3( 0.,1.,0.) );
    Matrices.uModelMatrix = glm::rotate( Matrices.uModelMatrix, Xrot, glm::vec3( 1.,0.,0.) );
    Matrices.uModelMatrix = glm::scale( Matrices.uModeIMatrix, glm::vec3(Scale,Scale,Scale) );
                // done this way, the Scale is applied first, then the Xrot, then the Yrot
}
else
{
    if(!Paused )
    {
        const glm::vec3 axis = glm::vec3( 0., 1., 0. );
        Matrices.uModelMatrix = glm::rotate( glm::mat4( 1. ), (float)glm::radians( 360.f*Time/SECONDS_PER_CYCLE ), axis );
    }
}
glm::vec3 eye(0.,0.,EYEDIST );
glm::vec3 look(0.,0.,0.);
glm::vec3 up(0.,1.,0.);
Matrices.uVewMatrix = glm::lookAt( eye, look, up );
Matrices.uProjectionMatrix = glm::perspective( FOV, (double)Width/(double)Height, 0.1f, 1000.f );
Matrices.uProjectionMatrix[1][1] *= -1.; // Vulkan's projected Y is inverted from OpenGL
Matrices.uNormalMatrix = glm::inverseTranspose( glm::mat3( Matrices.uModelMatrix ); // note: inverseTransform !
Fill05DataBuffer( MyMatrixUniformBuffer, (void *) &Matrices );
Misc.uTime = (float)Time;
Misc.uMode = Mode;
Fill05DataBuffer( MyMiscUniformBuffer, (void *) &Misc );
```

University
Computer Graphics

$$
\begin{aligned}
x^{\prime} & =A x+B y+C z+D \\
y^{\prime} & =E x+F y+G z+H \\
z^{\prime} & =I x+J y+K z+L
\end{aligned}
$$

This is called a "Linear Transformation" because all of the coordinates are raised to the $1^{\text {st }}$ power, that is, there are no x^{2}, x^{3}, etc. terms.

Or, in matrix form:
x consuming column
y consuming column
z consuming column
constant column

Transformation Matrices

Translation

$\left\{\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{lllc}1 & 0 & 0 & T_{x} \\ 0 & 1 & 0 & T_{y} \\ 0 & 0 & 1 & T_{z} \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left\{\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right\}$

Scaling

$$
\left\{\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right\}=\left[\begin{array}{cccc}
S_{x} & 0 & 0 & 0 \\
0 & S_{y} & 0 & 0 \\
0 & 0 & S_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left\{\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right\}
$$

Rotation about X
$\left\{\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right\}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left\{\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right\}$

Rotation about Y
$\left\{\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right\}=\left[\begin{array}{cccc}\cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left\{\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right\}$

Rotation about Z

$$
\left\{\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right\}=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left\{\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right\}
$$

How it Really Works :-)

The Rotation Matrix for an Angle (θ) about an Arbitrary Axis (Ax, Ay, Az)

$$
[M]=\left[\begin{array}{ccc}
A_{x} A_{x}+\cos \theta\left(1-A_{x} A_{x}\right) & A_{x} A_{y}-\cos \theta\left(A_{x} A_{y}\right)-\sin \theta A_{z} & A_{x} A_{z}-\cos \theta\left(A_{x} A_{z}\right)+\sin \theta A_{y} \\
A_{y} A_{x}-\cos \theta\left(A_{y} A_{x}\right)+\sin \theta A_{z} & A_{y} A_{y}+\cos \theta\left(1-A_{y} A_{y}\right) & A_{y} A_{z}-\cos \theta\left(A_{y} A_{z}\right)-\sin \theta A_{x} \\
A_{z} A_{x}-\cos \theta\left(A_{z} A_{x}\right)-\sin \theta A_{y} & A_{z} A_{y}-\cos \theta\left(A_{z} A_{y}\right)+\sin \theta A_{x} & A_{z} A_{z}+\cos \theta\left(1-A_{z} A_{z}\right)
\end{array}\right]
$$

For this to be correct, A must be a unit vector

Compound Transformations

Q: Our rotation matrices only work around the origin? What if we want to rotate about an arbitrary point (A, B) ?

A: We create more than one matrix.

Write it

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{c}
\boxed{3} \\
{\left[T_{+A,+B}\right]} \\
\left.\left.\left[\begin{array}{l}
\boxed{2} \\
\text { Say it } \\
\hline\left[\begin{array}{l}
\boxed{1} \\
T_{-A,-B}
\end{array}\right] \\
\left.\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
\end{array}\right)\right)\right)
\end{array}\right.
$$

Oregon State University
Computer Graphics

Matrix Multiplication is not Commutative

Matrix Multiplication is Associative

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\left[T_{+A,+B}\right] \cdot\left(\left[R_{\theta}\right] \cdot\left(\left[T_{-A,-B}\right]\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)\right)\right)\right.
$$

Here's the vertex shader shader code to use the matrices:

```
layout( std140, set = 0, binding = 0) uniform sceneMatBuf
{
    mat4 uProjectionMatrix;
    mat4 uViewMatrix;
    mat4 uSceneMatrix;
} SceneMatrices;
layout( std140, set = 1, binding = 0 ) uniform objectMatBuf
{
    mat4 uModelMatrix;
    mat4 uNormalMatrix;
} ObjectMatrices;
```

```
vNormal = uNormalMatrix * aNormal;
gl_Position = uProjectMatrix * uViewMatrix * uSceneMatrix * uModelMatrix * aVertex;
```


glm::mat4 Model = uViewMatrix*uSceneMatrix*uModelMatrix;
uNormalMatrix = glm::inverseTranspose(glm::mat3(Model));
It is, if the Model Matrices are all
rotations and uniform scalings, but if it
has non-uniform scalings, then it is not.
These diagrams show you why.

Original object and normal:

uNormalMatrix = glm::mat3(Model);

OregonState University Computer Graphics

Right!
uNormalMatrix = glm::inverseTranspose(glm::mat3(Model));

