From the Quick Reference Card 2

‘ Even though Vulkan is up to 1.3, the most current Vulkan Reference card is version 1.1 |

Vulkan 1.1 Reference Guide

Vulkan Pipeline Diagram [9]

D
M
, N— .
[Csetton s J——— | Doseriptor ses
Ffessellation Primitive Gene: ‘ Push Constants
= Uniform Buffer

_,[Compute Shader

Uniform Texel Buffers -
:
i
|

Some Vulkan commands specify geometric objects
to be drawn or computational work to be performed,
Storage Images while th how objects

] are handied by the various pipeline stages, or control
data transfer between memory organized as images
and buffers. Commands are effectively sent through
a processing pipeline, either a graphics pipeline or a
compute pipeline.

Storage Texel Buffers

Vertex Post-Processing.
Early Per-Fragment Tests

Depth/Stencil Attachments

T Fixed Function stage
Fragment Shader Input Attachments
[shader stage
Late Post-Fragment Tests [storage mages
Blending

https://www.khronos.org/files/vulkan11-reference-quide.pdf

University
Computer Graphics

mjb— December 26, 2022

1
Wulkan.
Data Buffers
Oregon State
University
Mike Bailey
mjb@cs.oregonstate.edu
nsed under a Creative Commons
lonCommercial-NoDerivatives 4.0
TR
Gy
i
LEIE/
Oregon State
University
Computer Graphics
DataBufters potx mjb - December 26, 2022
Terminology Issues 3

AVulkan Data Buffer is just a group of contiguous bytes in GPU memory. They
have no inherent meaning. The data that is stored there is whatever you want it
to be. (This is sometimes called a “Binary Large Object”, or “BLOB".)

It is up to you to be sure that the writer and the reader of the Data Buffer are
interpreting the bytes in the same way!

Vulkan calls these things “Buffers”. But, Vulkan calls other things “Buffers”, too,
such as Texture Buffers and Command Buffers. So, | sometimes have taken to
calling these things “Data Buffers” and have even gone so far as to extend
some of Vulkan’s own terminology:

typedef VkBuffer VkDataBuffer;
This is probably a bad idea in the long run.
e
Gt
&
Oregon State

University
Computer Graphics
mjb - December 26, 2022

Creating and Filling Vulkan Data Buffers 4

bufferUsage
queueFamilyindices
size (bytes)

LogicalDevice

VkBufferCreatelnfo
vkCreateBuffer()

vkGetBufferMemoryRequirements()

memoryType

VkMemoryAllocatelnfo

bufferMemoryHandle

vkBindBufferMemory()
vkMapMemory()

gpuAddress

University
Computer Graphics
mjb - December 26, 2022

12/29/2022

Creating a Vulkan Data Buffer

VkBuffer Buffer;

VkBufferCreatelnfg_vbai,)

vbei.sType = VR_STRUCTURE_TYPE_BUFFER_CREATE_INFO;

vbci.pNext = nullptr;

vbci.flags = 0;

vbci.size = << buffer sizg in bytes >>

vbci.usage = <<or’ed bit§ of: >>
VK_USAGE_TRANSFER_SRC_BIT
VK_USAGE_TRANSFER_DST_BIT
VK_USAGE_UNIFORM_TEXEL_BUFFER_BIT

/I or "VkDataBuffer Buffer"

VK_USAGE_STORAGE_TEXEL_BUFFER_BIT
VK_USAGE_UNIFORM, BUFFER_BIT
VK_USAGE_STORAGE\ BUFFER_BIT
VK_USAGE_INDEX_BURFER_BIT

“or” these bits together
to specify how this
buffer will be used

VK_USAGE_VERTEX_BUFFER_BIT
VK_USAGE_INDIRECT_BYFFER_BIT
vbci.sharingMode = << one of: >>
VK_SHARING_MODE_EXCIUSIVE
VK_SHARING_MODE_CONCURRENT
vbci.queueFamilylndexCount = 0;
vbci.pQueueFamilylndices = (const ioRt32_t) nullptr;

result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &Buffer);
0

Ommversmy
Computer Graphics

mjb - December 26, 2022

Allocating Memory for a Vulkan Data Buffer, Binding a
Buffer to Memory, and Writing to the Buffer

VkMemoryRequirements
result = vkGetBufferMemoryReqyirements(LogicalDevice, Buffer, OUT &vmr);

VkMemoryAllocatelnfo Cvmai;)

vmai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
vmai.pNext = nullptr;
vmai.flags = 0;

vmai.allocationSize = vmr.size;
vmai.memoryTypelndex = FindMemor¥ThatlsHostVisible();

VkDeviceMemory

result = vkAllocateMemory(LogicalD&vige, | ai, PALLOCATOR, OUT &vdm);

result = vkBindBufferMemory(LogicalDeWce, Buffer, IN vdm, 0);

result = vkMapMemory(LogicalDevice, IN vdm, 0, VK_WHOLE_SIZE, 0, &ptr);

<< do the memory copy >>

Ores result = vkUnmapMemory(LogicalDevice, IN vdm);

/1 0is the offset

University
Computer Graphics

mjb— December 26, 2022

Finding the Right Type of Memory

int
FindMemoryThatlsHostVisible()
{
VkPhysicalDeviceMemoryProperties vpdmp;
vkGetPhysicalDeviceMemoryProperties(PhysicalDevice, OUT &vpdmp);
for(unsigned int i = 0; i < vpdmp.memoryTypeCount; i++)
{

VkMemoryType vmt = vpdmp.memaryType

return i;

}

return -1;

)1=0)

if((vmt.propertyFlags & ¥K_MEMORY_PROPERTY_HOST_VISIBLE_B|
{

University
Computer Graphics

mjb — December 26, 2022

Finding the Right Type of Memory

int
FindMemoryThatlsDeviceLocal()
{
VkPhysicalDeviceMemoryProperties vpdmp;
vkGetPhysicalDeviceMemoryProperties(PhysicalDevice, OUT &vpdmp);
for(unsigned int i = 0; i < vpdmp.memoryTypeCount; i++)
{

VkMemoryType vmt = vpdmp.memaoryType

return i;

return -1;

if((vmt.propertyFlags 8WK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT !
{

University
Computer Graphics

mjb — December 26, 2022

12/29/2022

Finding the Right Type of Memory 9

VkPhysicalDeviceMemoryProperties vpdmp;
vkGetPhysicalDeviceMemoryProperties(PhysicalDevice, OUT &vpdmp);

6 Memory Types:

Memory 0:

Memory 1: DevicelLocal

Memory 2: HostVisible HostCoherent

Memory 3: HostVisible HostCoherent HostCached
Memory 4: DevicelLocal HostVisible HostCoherent
Memory 5: DevicelLocal

4 Memory Heaps:

Heap 0: size = 0xdbb00000 DevicelLocal
Heap 1: size = 0xfd504000

Heap 2: size = 0x0d600000 DevicelLocal
Heap 3: size = 0x02000000 DevicelLocal

| These are the numbers for the Nvidia A6000 cards

e
Gt
OregonState

University
Computer Graphics
mjb - December 26, 2022

Memory-Mapped Copying to GPU Memory, Example Il

struct vertex *vp;
vkMapMemory(LogicalDevice, IN myBuffer.vdm, 0, VK_WHOLE_SIZE, 0, OUT (void *)&vp);
for(int i = 0; i < numTrianglesInObjFile; i++) /I number of triangles

for(intj=0;j<3;j++) 11 3 vertices per triangle

{
vp->position = glm::vec3(. ..);
vp->normal = gim::ivec3(...);
vp->color = glm::vec3(. ..);
vp->texCoord = gim::vec2(. ..);
vptt;

}

}

vkUnmapMemory(LogicalDevice, myBuffer.vdm);

University
Computer Graphics
mjb — December 26, 2022

Memory-Mapped Copying to GPU Memory, Example | 10
void *mappedDataAddr;
vkMapMemory(LogicalDevice, myBuffer.vdm, 0, VK_WHOLE_SIZE, 0, OUT (void *)&mappedDataAddr);
memcpy(mappedDataAddr, &VertexData, sizeof(VertexData));
vkU pM ory(LogicalDevice, myBuffer.vdm);
Oregon State
University
Computer Graphics
mjb— December 26, 2022
Sidebar: The Vulkan Memory Allocator (VMA) 12

The Vulkan Memory Allocator is a set of functions to simplify your view of allocating
buffer memory. | am including its github link here and a little sample code in case you
want to take a peek.

https://github.com/GPUQOpen-LibrariesAndSDKs/VulkanMemoryAllocator

This repositoryalso includes a smattering of documentation.

See our class VMA noteset for more VMA details

tate

University
Computer Graphics
mjb - December 26, 2022

12/29/2022

Sidebar: The Vulkan Memory Allocator (VMA) 13

#define VMA_IMPLEMENTATION
#include “vk_mem_alloc.h”

Vi(éuﬁerCreatelnfo vbci;

VmaAllocationCreatelnfo vaci;
vaci.physicalDevice = PhysicalDevice;
vaci.device = LogicalDevice;
vaci.usage = VMA_MEMORY_USAGE_GPU_ONLY;

VmaAllocator var,
vmaCreateAllocator(IN &vaci, OUT &var);

VkBuffer Buffer;
VmaAllocation van;
vmaCreateBuffer(IN var, IN &vbci, IN &vaci, OUT &Buffer. OUT &van, nullptr);

void *mappedDataAddr;
vmaMapMemory(var, van, OUT &mappedDataAddr);

memcpy(mappedDataAddr, &VertexData, sizeof(VertexData));

vmaUnmapMemory(var, van);

Oregon State

University See our class VMA noteset for more VMA details
Computer Graphics

mjb - December 26, 2022

Something I've Found Useful 14

| find it handy to encapsulate buffer information in a struct:

typedef struct MyBuffer
{
VkDataBuffer buffer;
VkDeviceMemory vdm;
VkDeviceSize size; /l'in bytes
} MyBuffer;
/l example:
MyBuffer MyObjectUniformBuffer;

It's the usual object-oriented benefit — you can pass around just one
data-item and everyone can access whatever information they need.

It also makes it impossible to accidentally associate the wrong
VkDeviceMemory and/or VkDeviceSize with the wrong data buffer.

University
Computer Graphics
mjb - December 26, 2022

Initializing a Data Buffer 15

It's the usual object-oriented benefit — you can pass around just one
data-item and everyone can access whatever information they need.

VkResult
Init05DataBuffer(VkDeviceSize size, VkBufferUsageFlags usage, OUT MyBuffer * pMyBuffer)
{

vbci.size = pMyBuffer->size = size;
result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &pMyBuffer->buffer);

pMyBuffer->vdm = vdm;

University
Computer Graphics
mjb - December 26, 2022

Here are C/C++ structs used by the Sample Code to hold some uniform variables6

struct sceneBuf
{

gim:: matd uProjection;
gim:: maté uView;
gim:: matd uSceneOrient;

vecd uLightPos
vecd uLightColor;
vecd uLightKaKdKs:
float uTime;

} Scene;

struct objectBuf
{

} Object:

The uNormal is set to:

gim::matd uModel; N . .

gim: matd uNormal: glm::inverseTranspose(uView * uSceneOrient * uModel)
vecd uColor,

float uShininess;

Here’s the associated GLSL shader code to access those uniform variables:

layout(51d140, set = 1, binding = 0) uniform sceneBuf

maté uProjection; In the vertex shader, each object vertex gets transformed by:
matd uMiew, uProjection* uView * uSceneOrient * uModel
matd uSceneOrient;
vecd uLightPos;
vecd utwunlﬁolgrk In the vertex shader, each surface normal vector gets
yeor [MLgMiKaKdks: transformed by the uNormal
1 Scene;

layout(std140, set = 2, binding = 0) uniform objectBuf

mat4 uModel;

matd uNormal;

vecd uColor;

float uShininess:
} Object;

Computer Graphics

mjb — December 26, 2022

12/29/2022

Filling those Uniform Variables

const float EYEDIST
const double FOV

3.0f;
glm::radians(60.);

// field-of-view angle in radians

glm::vec3 eye(0.,0.,EYEDIST);
glm::vec3 look(0.,0.,0.);
glm::vec3 up(0.,1.,0.);

= glm::perspective(FOV, (double)Width/(double)Height, 0.1, 1000.);
Scene.uProjection[1][1] *=-1.; 1l account for Vulkan’s LH screen coordinate system
Scene.uView = glm::lookAt(eye, look, up);

=glm:mat4(1.);

Scene.uProjection

Scene.uSceneOrient

Object.uModelOrient = gim::mat4(1.);
Object.uNormal

// identity

= glm::inverseTranspose(Scene.uView * Scene.uSceneOrient * Object.

uModel)

This code assumes that this line:
#define GLM_FORCE_RADIANS

is listed before GLM is #included!

University
Computer Graphics

The Parade of Buffer Data 18

MyBuffer ~ MyObjectUniformBuffer;

The MyBuffer does not hold any actual data itself. It
just information about what is in the data buffer

esult
Init05DataBuffer(ViDeviceSize size, VkBufierUsageFlags usage, OUT MyBufler * pMyBuffer)
{

vbei.size = pMyBulfer->size = size;
" resuit= kCreateBufier (LogicalDevice, IN vbci, PALLOCATOR, OUT &pMyBuffer->bufer)

pMyBuffer->vdm = vam:

This C struct is holding the original
data, written by the application.

mjb - December 26, 2022

Filling the Data Buffer

typedef struct MyBuffer

VkDataBuffer buffer;

VkDeviceMemory — wdm;

VkDeviceSize size; I in bytes
} MyBuffer;

I/ example:
MyBuffer

MyObjectUniformBuffer;

ObjectUniformBuffer);

Init05UniformBuffer(sizeof(Object),

IN (void *) &Object);

Fillo5DataBuffer(MyOb}'ééUniformBu er,
/

struct objectBuf

uShininess;

Oregon State

University
Computer Graphics

mjb — December 26, 2022

~— o Memay,
'ay . . .
c[,’:;iocony \ The Data Buffer in GPU memory is
n . . .
holding the copied data. It is
readable by the shaders
struct objectBuf _ Object;
Object uModelOrient = gim:zmatd(1.); I identity |
Object.uNormal pose(Wi * Object.uModel)
uniform objectBuf Object;
layoul{ std140, set = 2, binding = 0) uniform objectBul
(
matd uModel;
matd ubormal
weod uColor,
University float uShininess
Computer Graphics } Objest.
Creating and Filling the Data Buffer — the Details 20
VkResult
Init05DataBuffer(VkDeviceSize size, VkBufferUsageFlags usage, OUT MyBuffer * pMyBuffer)
{
VkResult result = CESS;
VkBufferCreatell
vbci.sType = VR TURE_TYPE_BUFFER_CREATE_INFO;
vbci.pNext = nullptr;
vbci.flags = 0;
vbci.size = pMyBuffer->size S\size;
vbci.usage = usage;
vbci.sharingMode = VK_SHARINGNVIODE_EXCLUSIVE;
vbci.queueFamilylndexCount = 0;
vbci.pQueueFamilylndices = (const uint32_t *)nullptr;
result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &pMyBuffer->buffer);
VkMemoryRequirements
vkGetBufferMemoryRequirements(LogfcaDevice, IN pMyBuffer->buffer, OUT &vmr); 1/ fills vmr
VkMemoryAllocatelnfo (@
vmai.sType = VK_STRUCJUR YPE_MEMORY_ALLOCATE_INFO;
vmai.pNext = nullptr;
vmai.allocationSize = vmr.size;
vmai.memoryTypelndex = FindMemory{hatlsHostVisible();
VkDeviceMemory
result = vkAllocateMemor
pMyBuffer->vdm = vdify;
result = vkBinc A y(LogicalDevice, buffer, IN vdm, OFFSET_ZERO);
return result;
o}
Conpurcrorapme:

mjb — December 26, 2022

12/29/2022

12/29/2022

Creating and Filling the Data Buffer — the Details 21

VkResult
Fillo5DataBuffer(IN MyBuffer myBuffer, IN
{

oid * data
/I the size of the data had better match ffie size that was used to Init the buffer!

void * pGpuMemory;
vkMapMemory(LogicalDevice

myBuffer.vdm, 0, VK_WHOLE_SIZE, 0. OLK &pGpuMemory);

0 and 0 are offset and flag
memcpy(pGpuMemory, data, (size_t)myBuffer.size);

vkUnmapMemory(LogicalDevice, IN myBuffer.vdm);
return VK_SUCCESS;

Remember — to Vulkan and GPU memory, these are just bits. It is up to you to
handle their meaning correctly.

b .l
University N
Computer Graphics

mjb - December 26, 2022

