12/29/2022

1
Qi
ulkan.
Data Buffers
Oregon State
University
Mike Bailey
mjb@cs.oregonstate.edu
This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License
University
Computer Graphics
DataBuffers. pptx mjb — December 26, 2022
From the Quick Reference Card 2

| Even though Vulkan is up to 1.3, the most current Vulkan Reference card is version 1.1 |

Vulkan 1.1 Reference Guide

Vulkan Pipeline Diagram [g]

Dispatch

Indirect Buffer
Index Buffer

Vertex Buffer

Input Assembler

Vertex Shader

Descriptor Sets ¥
!

Push Constants
Uniform Buffer

Control Shader

Tessellation Primitive Generator

Uniform Texel Buffers — T

Compute Shader

Sampled Images - !

Storage Buffers

y Shader

Early Per-Fragment Tests

W

Drego State
University
Computer Graphics

Some Vulkan commands specify geometric objects
to be drawn or computational work to be performed,
Storage Images while others specify state controlling how objects
are handled by the various pipeline stages, or control
data transfer between memory organized as images
and buffers. Commands are effectively sent through
a processing pipeline, either a graphics pipeline or a

ing! " ipeli
pth/Stencil compute pipeline.

[Fixed Function Stage
=
[shader stage

[storage images

Storage Texel Buffers

Color Attachments

https://www.khronos.org/files/vulkan11-reference-quide.pdf

mjb — December 26, 2022

Terminology Issues 3

A Vulkan Data Buffer is just a group of contiguous bytes in GPU memory. They
have no inherent meaning. The data that is stored there is whatever you want it
to be. (This is sometimes called a “Binary Large Object”, or “BLOB”.)

It is up to you to be sure that the writer and the reader of the Data Buffer are
interpreting the bytes in the same way!

Vulkan calls these things “Buffers”. But, Vulkan calls other things “Buffers”, too,
such as Texture Buffers and Command Buffers. So, | sometimes have taken to
calling these things “Data Buffers” and have even gone so far as to extend
some of Vulkan’s own terminology:

typedef VkBuffer VkDataBuffer;

This is probably a bad idea in the long run.

Oregon State
University
Computer Graphics
mjb — December 26, 2022

Creating and Filling Vulkan Data Buffers 4

bufferUsage
queueFamilylndices
size (bytes)

LogicalDevice

VkBufferCreatelnfo
vkCreateBuffer()

memoryType

VkMemoryAllocatelnfo

LogicalDevice vkAllocateMemory() |
Oregon State gpuAddress
University

Computer Graphics
mjb — December 26, 2022

12/29/2022

Creating a Vulkan Data Buffer 5
VkBuffer Buffer; // or "VkDataBuffer Buffer"
VkBufferCreateln ’4@
vbci.sType = TRUCTURE_TYPE_BUFFER_CREATE_INFO;

vbci.pNext = nullptr;
vbci.flags = 0;
vbci.size = << buffer si2g in bytes >>
vbci.usage = <<or’ed bit§ of: >> \
VK_USAGE_TRANSFER_SRC_BIT
VK_USAGE_TRANSFER_DST_BIT
VK_USAGE_UNIFORM_TEXEL_BUFFER_BIT
VK_USAGE_STORAQE_TEXEL_BUFFER_BIT >‘ “or” these bits together

VK_USAGE_UNIFORM_BUFFER_BIT to specify how this
VK_USAGE_STORAGE\ BUFFER_BIT buffer will be used
VK_USAGE_INDEX_BURFER_BIT
VK_USAGE_VERTEX_BUFFER_BIT
VK_USAGE_INDIRECT_BWFFER_BIT
vbci.sharingMode = << one of: >> J
VK_SHARING_MODE_EXCLNUSIVE
VK_SHARING_MODE_CON
vbci.queueFamilylndexCount = 0;
vbci.pQueueFamilylndices = (const io\t32_t) nullptr;

result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &Buffer);
O

Computer Graphics
mjb — December 26, 2022

Allocating Memory for a Vulkan Data Buffer, Binding a 6
Buffer to Memory, and Writing to the Buffer

VkMemoryRequirements
result = vkGetBufferMemoryReqyirements(LogicalDevice, Buffer, OUT &vmr);

VkMemoryAllocatelnfo Cymai;)

vmai.sType = VK_STRUCTUR PE_MEMORY_ALLOCATE_INFO;
vmai.pNext = nullptr;
vmai.flags = 0;

vmai.allocationSize = vmr.size;
vmai.memoryTypelndex = FindMemoryThatlsHostVisible();

VkDeviceMemory

result = vkAllocateMemory(LogicalD&vite, | ai, PALLOCATOR, OUT &vdm);

result = vkBindBufferMemory(LogicalDewce, Buffer, IN vdm, 0); /I 0 is the offset

result = vkMapMemory(LogicalDevice, IN vdm, 0, VK_WHOLE_SIZE, 0, &ptr);

<< do the memory copy >>

Oreg result = vkUnmapMemory(LogicalDevice, IN vdm);

Universt
Computer Graphics

mjb — December 26, 2022

12/29/2022

Finding the Right Type of Memory 7

int

FindMemoryThatlsHostVisible()

{
VkPhysicalDeviceMemoryProperties vpdmp;
vkGetPhysicalDeviceMemoryProperties(PhysicalDevice, OUT &vpdmp);
for(unsigned int i = 0; i < vpdmp.memoryTypeCount; i++)

{
VkMemoryType vmt = vpdmp. e
if((vmt.propertyFlags & MEMORY_PROPERTY_HOST_VISIBLE_BID) !=0)
{

return i;

}
}

return -1;

9

E*E

Oregon State
University
Computer Graphics
mjb — December 26, 2022

Finding the Right Type of Memory 8

int

FindMemoryThatlsDeviceLocal()

{
VkPhysicalDeviceMemoryProperties vpdmp;
vkGetPhysicalDeviceMemoryProperties(PhysicalDevice, OUT &vpdmp);
for(unsigned int i = 0; i < vpdmp.memoryTypeCount; i++)

{
VkMemoryType vmt = vpdmp. oryTypesi-
if((vmt.propertyFlags _MEMORY_PROPERTY_DEVICE_LOCAL_BID) !=0)
{

return i;

}
}

return -1;

dopn

E*E

Oregon State
University
Computer Graphics
mjb — December 26, 2022

12/29/2022

Finding the Right Type of Memory 9

VkPhysicalDeviceMemoryProperties vpdmp;
vkGetPhysicalDeviceMemoryProperties(PhysicalDevice, OUT &vpdmp);

6 Memory Types:

Memory 0:

Memory 1: DevicelLocal

Memory 2: HostVisible HostCoherent

Memory 3: HostVisible HostCoherent HostCached
Memory 4: DevicelLocal HostVisible HostCoherent
Memory 5: Devicelocal

4 Memory Heaps:

Heap 0: size = Oxdbb00000 DevicelLocal
Heap 1: size = 0xfd504000

Heap 2: size = 0x0d600000 DevicelLocal
Heap 3: size = 0x02000000 DevicelLocal

| These are the numbers for the Nvidia A6000 cards

Oregon State
University
Computer Graphics
mjb — December 26, 2022

Memory-Mapped Copying to GPU Memory, Example | 10

void *mappedDataAddr;
vkMapMemory(LogicalDevice, myBuffer.vdm, 0, VK_WHOLE_SIZE, 0, OUT (void *)&mappedDataAddr);
memcpy(mappedDataAddr, &VertexData, sizeof(VertexData));

vkUnmapMemory(LogicalDevice, myBuffer.vdm);

Oregon State
University
Computer Graphics
mjb — December 26, 2022

12/29/2022

Memory-Mapped Copying to GPU Memory, Example I M

struct vertex *vp;
vkMapMemory(LogicalDevice, IN myBuffer.vdm, 0, VK_WHOLE_SIZE, 0, OUT (void *)&vp);
for(inti = 0; i < numTrianglesInObjFile; i++) /I number of triangles
for(intj=0;j<3;j++) /I 3 vertices per triangle

vp->position = glm::vec3(. ..);

vp->normal = gim::vec3(. ..);

vp->color = gim::vec3(. ..);

vp->texCoord = gim::vec2(. ..);

vp++;

}

vkUnmapMemory(LogicalDevice, myBuffer.vdm);

Oregon State
University
Computer Graphics

mjb — December 26, 2022

Sidebar: The Vulkan Memory Allocator (VMA) 12

The Vulkan Memory Allocator is a set of functions to simplify your view of allocating

buffer memory. | am including its github link here and a little sample code in case you
want to take a peek.

https://github.com/GPUQpen-LibrariesAndSDKs/VulkanMemoryAllocator

This repositoryalso includes a smattering of documentation.

See our class VMA noteset for more VMA details

Oregon State
University
Computer Graphics
mjb — December 26, 2022

12/29/2022

Sidebar: The Vulkan Memory Allocator (VMA)

#define VMA_IMPLEMENTATION
#include “vk_mem_alloc.h”

.V.k'BufferCreateInfo vbci;

VmaAllocationCreatelnfo vaci;
vaci.physicalDevice = PhysicalDevice;
vaci.device = LogicalDevice;
vaci.usage = VMA_MEMORY_USAGE_GPU_ONLY;

VmaAllocator var,
vmaCreateAllocator(IN &vaci, OUT &var);

.V.kBuffer Buffer;
VmaAllocation van;
vmaCreateBuffer(IN var, IN &vbci, IN &vaci, OUT &Buffer. OUT &van, nullptr);

void *mappedDataAddr;
vmaMapMemory(var, van, OUT &mappedDataAddr);

memcpy(mappedDataAddr, &VertexData, sizeof(VertexData));

vmaUnmapMemory(var, van);

i

Oregon State

University See our class VMA noteset for more VMA details
Computer Graphics

13

mjb — December 26, 2022

Something I've Found Useful

| find it handy to encapsulate buffer information in a struct:

typedef struct MyBuffer
VkDataBuffer buffer;
VkDeviceMemory vdm;
VkDeviceSize size; /l in bytes
} MyBuffer;
/I example:
MyBuffer MyObjectUniformBuffer;

It also makes it impossible to accidentally associate the wrong
VkDeviceMemory and/or VkDeviceSize with the wrong data buffer.

It's the usual object-oriented benefit — you can pass around just one
data-item and everyone can access whatever information they need.

Oregon State
University
Computer Graphics

14

mjb — December 26, 2022

12/29/2022

Initializing a Data Buffer 15

It's the usual object-oriented benefit — you can pass around just one
data-item and everyone can access whatever information they need.

VkResult
Init05DataBuffer(VkDeviceSize size, VkBufferUsageFlags usage, OUT MyBuffer * pMyBuffer)
{
vbci.size = pMyBuffer->size = size;
result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &pMyBuffer->buffer);
pMyBuffer->vdm = vdm;
}
o
a*i
Oregon State
Universil

Computer Graphics

mjb — December 26, 2022

Here are C/C++ structs used by the Sample Code to hold some uniform variables’6

struct sceneBuf

glm:: mat4
glm:: matd
glm:: mat4
vecd
vecd
vecd
float
} Scene;

struct objectBuf

glm::mat4
glm:: mat4
vecd
float

} Object;

uProjection;
uView;
uSceneOrient;
uLightPos;
uLightColor;

uLightKaKdKs;

uTime;

uModel;
uNormal;
uColor;
uShininess;

The uNormal is set to:
glm::inverseTranspose(uView * uSceneOrient * uModel)

Here’s the associated GLSL shader code to access those uniform variables:

{

layout(std140, set = 1, binding = 0) uniform sceneBuf

maté4 uProjection;
mat4 uView;
matd uSceneOrient;
vecd uLightPos;
vecd uLightColor;
vecd uLightkaKdKs;
float uTime;

} Scene;

layout(std140, set = 2, binding = 0) uniform objectBuf

matd uModel;

mat4 uNormal;

vecd uColor;

float uShininess;
} Object;

In the vertex shader, each object vertex gets transformed by:
uProjection* uView * uSceneOrient * uModel

In the vertex shader, each surface normal vector gets
transformed by the uNormal

Computer Graphics

mjb — December 26, 2022

12/29/2022

Filling those Uniform Variables 17
const float EYEDIST = 3.0f;
const double FOV = glm:rradians(60.); // field-of-view angle in radians
glm::vec3 eye(0.,0.,EYEDIST);
glm::vec3 look(0.,0.,0.);
glm::vec3 up(0.,1.,0.);
Scene.uProjection = glm::perspective(FOV, (double)Width/(double)Height, 0.1, 1000.);
Scene.uProjection[1][1] *=-1.; /I account for Vulkan’s LH screen coordinate system
Scene.uView = glm::lookAt(eye, look, up);
Scene.uSceneOrient =gim:mat4(1.);
Object.uModelOrient = gim::mat4(1.); /I identity
Object.uNormal = glm::inverseTranspose(Scene.uView * Scene.uSceneOrient * Object.uModel)

This code assumes that this line:
#define GLM_FORCE_RADIANS

is listed before GLM is #included!

Oregon State
University
Computer Graphics
mjb — December 26, 2022

The Parade of Buffer Data 18

MyBuffer MyObjectUniformBuffer;

The MyBuffer does not hold any actual data itself. It
just information about what is in the data buffer

VkResult
Init05D: VkDeviceSize size, VkBufferUsageFlags usage, OUT MyBuffer * pMyBuffer)
{

" \bci size = pMyBuffer->size = size;
result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &pMyBuffer->buffer);

pMyBuffer->vdm = vdm;

This C struct is holding the original
data, written by the application.

ry-
Perag Py The Data Buffer in GPU memory is
oy~ | holding the copied data. Itis
readable by the shaders

struct objectBuf Object;

Object.uModelOrient = gim::mat4(1.); If identity
Object.uNormal = gim::inverseTranspose(Scene.uView * Scene.uSceneOrient * Object.uModel)
uniform objectBuf Object;
layout(std140, set = 2, binding = 0) uniform objectBuf
{
matd uModel;
b matd uNormal;
Oregon State vecd uColor:
University float uShininess;
Computer Graphics } Object;

T =DeTemueT 20, Z0;

12/29/2022

Filling the Data Buffer

typedef struct MyBuffer
{

VkDataBuffer buffer;

VkDeviceMemory vdm;

VkDeviceSize size; /l'in bytes
} MyBuffer;

/I example:
MyBuffer MyObjectUniformBuffer; J__|

19

ObjectUniformBuffer);

Init05UniformBuffer(sizeof(Object),

IN (void *) &Object);

Fillo5DataBuffer(MyOb)'é:UniformBu er,
/

struct objectBuf

{

uShininess;

Oregon State
University
Computer Graphics

mjb — December 26, 2022

Creating and Filling the Data Buffer — the Details

20

VkResult
Init05DataBuffer(VkDeviceSize size, VkBufferUsageFlags usage, OUT MyBuffer * pMyBuffer)
{

VkResult result = CESS;

VkBufferCreatel

vbci.sType = VK_STRUOCTURE_TYPE_BUFFER_CREATE_INFO;
vbci.pNext = nullptr;
vbci.flags = 0;
vbci.size = pMyBuffer->size \gsize;
vbci.usage = usage;
vbci.sharingMode = VK_SHARING WIODE_EXCLUSIVE;
vbci.queueFamilylndexCount = 0;
vbci.pQueueFamilylndices = (const uint32_t *)nullptr;

result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &pMyBuffer->buffer);

VkMemoryRequirements
vkGetBufferMemoryRequirements(

VkMemoryAllocatelnfo (@

vmai.sType = VK_STRUCZUR PE_MEMORY_ALLOCATE_INFO;
vmai.pNext = nullptr;
vmai.allocationSize = vmr.size;
vmai.memoryTypelndex = FindMemory hatIsHostVisible();

VkDeviceMemory
result = vkAllocateMemo
pMyBuffer->vdm = vdfm;

result = vkBindBufferMemory(LogicalDevice, pMyBuffer->buffer, IN vdm, OFFSET_ZERO);
return result;

o}

ogicalDevice, IN pMyBuffer->buffer, OUT &vmr); /1 fills vmr

Conpureroraprme

mjb — December 26, 2022

12/29/2022

10

Creating and Filling the Data Buffer — the Details

21

VkResult
Fillo5DataBuffer(IN MyBuffer myBuffer, IN
{

oid * data
/I the size of the data had better match e size that was used to Init the buffer!

void * pGpuMemory;
vkMapMemory(LogicalDevice

myBuffer.vdm, 0, VK_WHOLE_SIZE, 0_QlX
0 and 0 are offset and flags
memcpy(pGpuMemory, data, (size_t)myBuffer.size);

vkUnmapMemory(LogicalDevice, IN myBuffer.vdm);
return VK_SUCCESS;

&pGpuMemory);

}
Remember — to Vulkan and GPU memory, these are just bits. It is up to you to
handle their meaning correctly.
Oregon State

Universil
Computer Graphics

8

mjb — December 26, 2022

12/29/2022

11

