



What's Really Going On The Physics of Collisions - Coefficient of Restitution

In a collision, energy is conserved in the entire system, but not necessarily in the form of velocities. (It can become heat, light, permanent deformation, etc.)
This loss of velocity is expressed as the Coefficient of Restitution (COR). The COR, $e$ is how much less the relative velocities of the objects are after impact than they were before impact:


$$
v_{b}^{\prime}-v_{a}^{\prime}=-e\left(v_{b}-v_{a}\right)
$$

(the negative sign is there to indicate the "bounce")


The Physics of Collisions with Immoveable Objects
To treat the case of mass b being an immoveable object, such as the ground or a solid wall, treat $b$ as if its mass was infinite. Then solve for the resulting velocities:

$$
\begin{aligned}
\lim _{m_{b} \rightarrow \infty} v_{a}^{\prime}= & \frac{m_{a} v_{a}+m_{b} v_{b}+e m_{b}\left(v_{b}-v_{a}\right)}{m_{a}+m_{b}} \\
= & \lim _{m_{b} \rightarrow \infty}\left[\frac{m_{a} v_{a}}{m_{a}+m_{b}}+\frac{m_{b} v_{b}}{m_{a}+m_{b}}+\frac{e m_{b}\left(v_{b}-v_{a}\right)}{m_{a}+m_{b}}\right] \\
& =\left[0+v_{b}+e\left(v_{b}-v_{a}\right)\right]
\end{aligned}
$$

Since mass $b$ is immoveable, its velocity must be zero, so that a's post-collision velocity is


## What's Really Going On:

Collisions - Experimentally Determining the Coefficient of Restitution
Velocities are hard to measure live, but distances are not.
So, drop the object from a height $\boldsymbol{h}$, and measure its bounce to a height $\mathbf{h}$ ' :

Energy before the bounce:
Energy after the bounce:
$v^{2}=0^{2}+2 g h$
$0^{2}=v^{\prime 2}-2 g h^{\prime}$
$v=\sqrt{2 g h}$
$v^{\prime}=\sqrt{2 g h^{\prime}}$

$$
\left|v^{\prime}\right|=e|v|
$$



$$
e=\frac{v^{\prime}}{v}=\frac{\sqrt{2 g h^{\prime}}}{\sqrt{2 g h}}=\sqrt{\frac{h^{\prime}}{h}}
$$




Building an Interest in Physics using TinkerCad!


OregonState
University
Mike Bailey mjb@cs.oregonstate.edu
mputer Graphic
N

