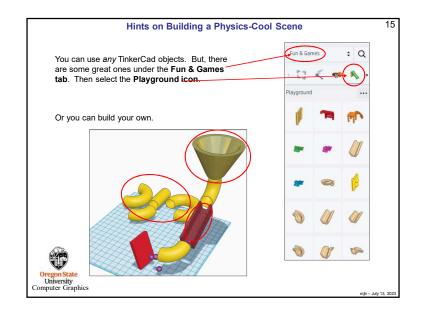
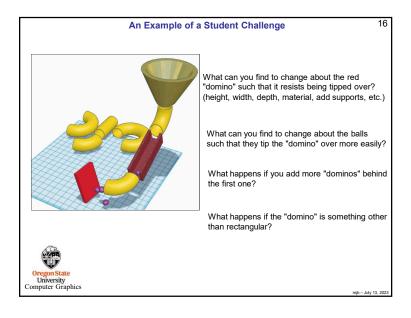
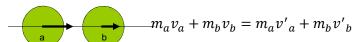

Density (g/cm/3)	130	230	0.92	0.08	660	0.60	7,40	990	0.13	130	Density (g/cm^3)	0.92	230	130	890	0.92	130	ann a	0.92	7.40	Density to (cm/3)	0.60	7.40	130	130	890	0000	2.30	0.92	0.92	Density (g/cm^3)	0.92	130	0.13	89'0	230	260	130	260	Density (g/cm/3)	80'0	0.13	890	0.92	0.03	130	130	230
80	090	0.75	0.75	5	0.50	960	0.85	07.0	990	060	COR	0.95	0.75	080	88	273	900	8 :	83	8 6	SOS	0.75	0.85	090	080	8 8	8 8	8 6	030	0.95	COR	030	8 8	0.65	0.70	0.75	0.75	8 8	860	80	0.50	0.65	0.0	0.75	200	090	060	0.75
9	0.35	990	0.30	9	27.0	81	0.30	0.40	040	0.35	90	100	970	0.35	0.40	0.30	0.35	RS :	6.5	0.30	900	0.30	030	0.35	0.35	0.40	980	890	0.75	100	COF	0.75	200	0.40	0.40	990	8 8	90.00	100	90	950	0.40	0.40	0730	5 2	250	0.35	0.65
Material	Plastic	Concrete	ce	Polystrene	Rubber	BouncyBubber	Steel	HardWood	SoftWood	Grid	Material	BouncyRubber	Concrete	Grid	HardWood	ice .	Plastic	Polystrene	Mudder	Street	Material	Ke	Steel	Plastic	Grid	HardWood	Soft Wood	Concrete	Rubber	BouncyRubber	Material	Rubber	Diwin	SoftWood	HardWood	Concrete	ice	Steel	BouncyRubber	Material	Polystrene	SoftWood	HardWood	ice .	NUDDE!	Bounkywaouer Plantic	Grid	Concrete
TinkerCad Order											By Material Name										BVCOF										By COR									By Density								


As a Refe	erence, Here are Some Othe	r Coefficion	ents of Restitution	11
	Balls Bounced on a Con	crete Surf	ace:	
	Ball Material	CoR		
	range golf ball	0.858		
	tennis ball	0.712		
	billiard ball	0.804		
	hand ball	0.752		
	wooden ball	0.603		
	steel ball bearing	0.597		
	glass marble	0.658		
	ball of rubber bands	0.828		
	hollow, hard plastic ball	0.688		
	http://hypertextbook.com/facts/200	06/restitution.sh	tml	





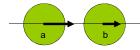
What's Really Going On: The Physics of Collisions – Conservation of Momentum

In a collision, the total momentum after the impact is equal to the total momentum before the impact. Always.

where the primes refer to velocities after the impact

This is referred to as the Conservation of Momentum Law

Momentum is always conserved through any collision



mib - July 13, 2023

17

What's Really Going On:

The Physics of Collisions - Combining Momentum and Restitution Laws

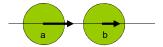
Starting with these two equations:

$$m_a v_a + m_b v_b = m_a v'_a + m_b v'_b$$

$$v'_b - v'_a = -e(v_b - v_a)$$

We then treat the two initial velocities as inputs and solve for the two resulting velocities. This gives:

$$v'_{a} = \frac{m_{a}v_{a} + m_{b}v_{b} + em_{b}(v_{b} - v_{a})}{m_{a} + m_{b}}$$


Oregon State University $v'_{b} = \frac{m_{a}v_{a} + m_{b}v_{b} - em_{a}(v_{b} - v_{a})}{m_{a} + m_{b}}$

- July 13, 2023

What's Really Going On: The Physics of Collisions – Coefficient of Restitution

In a collision, energy is conserved in the *entire system*, but not necessarily in the form of velocities. (It can become heat, light, permanent deformation, etc.)

This loss of velocity is expressed as the **Coefficient of Restitution** (COR). The COR, e, is how much less the relative velocities of the objects are after impact than they were before impact:

$$v'_b - v'_a = -e(v_b - v_a)$$

(the negative sign is there to indicate the "bounce")

nib – July 13, 202

20

18

What's Really Going On: The Physics of Collisions with Immoveable Objects

To treat the case of mass b being an *immoveable object*, such as the ground or a solid wall, treat b as if its mass was infinite. Then solve for the resulting velocities:

$$\lim_{m_b \to \infty} v_a' = \frac{m_a v_a + m_b v_b + e m_b (v_b - v_a)}{m_a + m_b}$$

$$= \lim_{m_b \to \infty} \left[\frac{m_a v_a}{m_a + m_b} + \frac{m_b v_b}{m_a + m_b} + \frac{e m_b (v_b - v_a)}{m_a + m_b} \right]$$

 $= [0 + v_h + e(v_h - v_a)]$

Since mass b is immoveable, its velocity must be zero, so that a's post-collision velocity is:

$$v'_a = [0 + 0 + e(0 - v_a)] = -ev_a$$

Oregon State University Computer Graphics

ib – July 13. 202

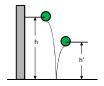
What's Really Going On:
Collisions – Experimentally Determining the Coefficient of Restitution

Velocities are hard to measure live, but distances are not.

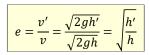
So, drop the object from a height **h**, and measure its bounce to a height **h'**:

Energy before the bounce:

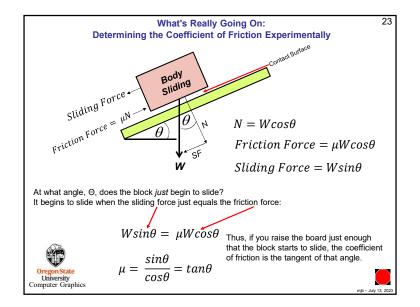
Energy after the bounce:

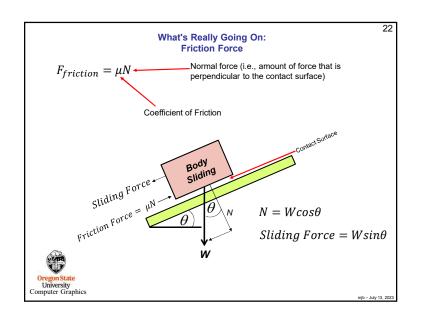

$$v^2 = 0^2 + 2gh$$

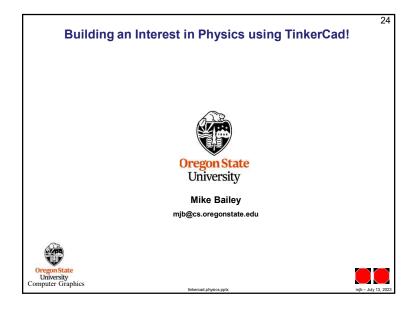
$$0^2 = v'^2 - 2gh'$$


$$v = \sqrt{2gh}$$

$$v' = \sqrt{2gh'}$$


$$|v'| = e|v|$$





mjb – July 13, 2023

