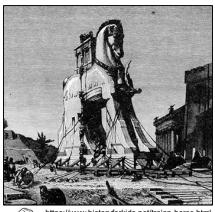
Building an Interest in Physics using TinkerCad!

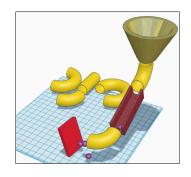
Mike Bailey

mjb@cs.oregonstate.edu

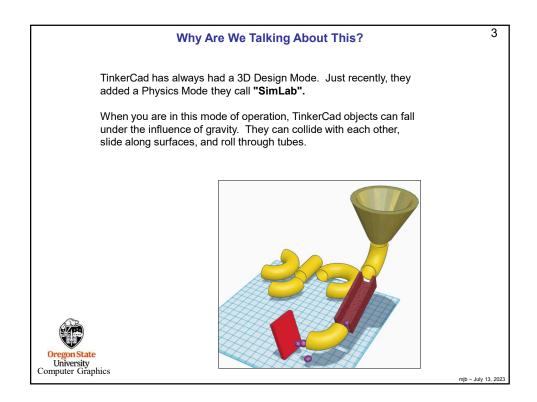

tinkercad.physics.pptx

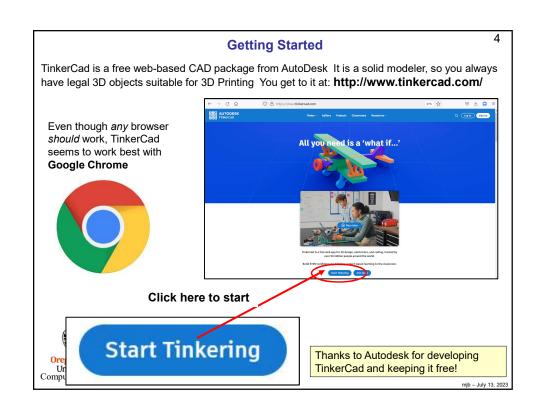
mjb – July 13, 2023

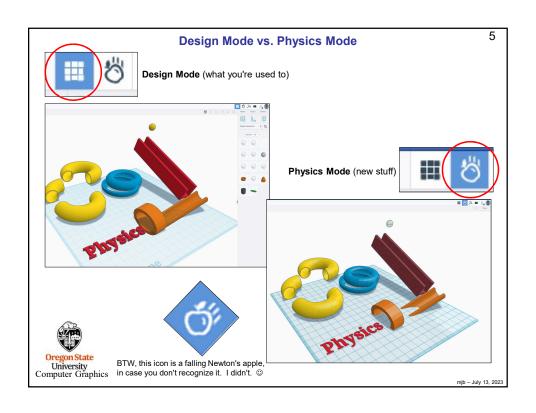
2

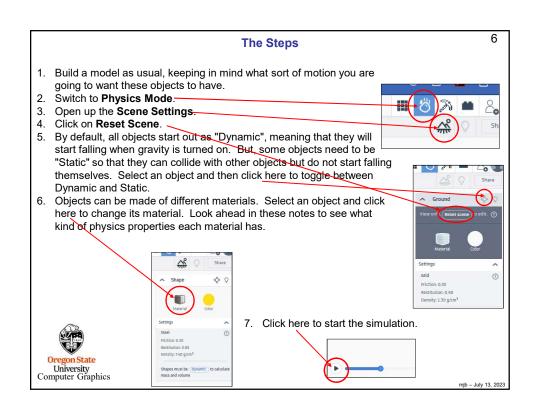

Trojan Horse Education

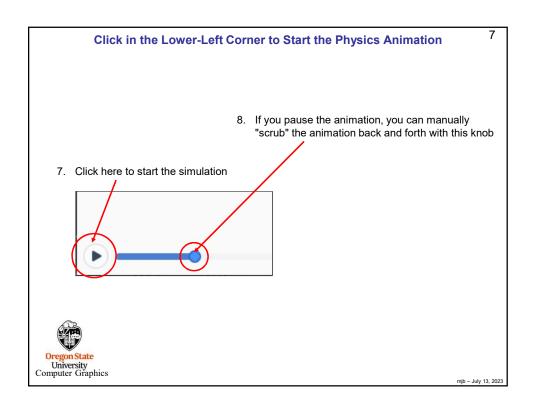
"Come for the cool animation, stay for the physics."

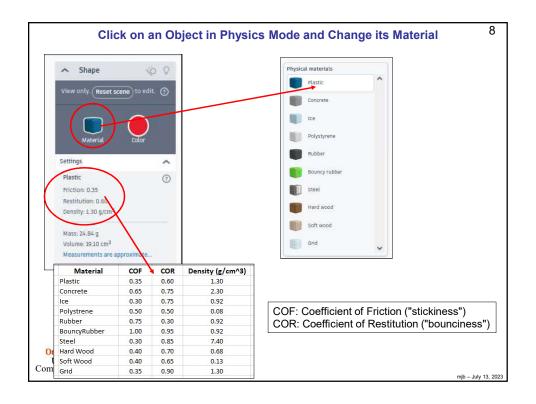


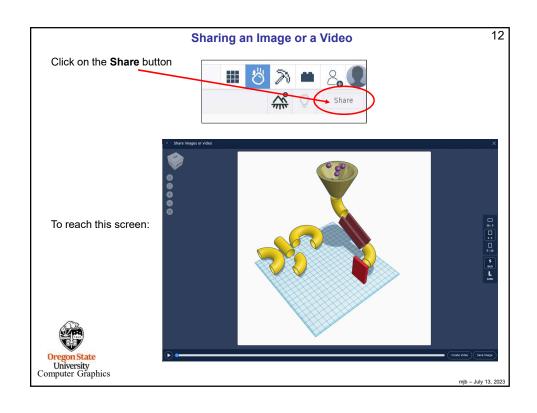

https://www.historyforkids.net/trojan-horse.html

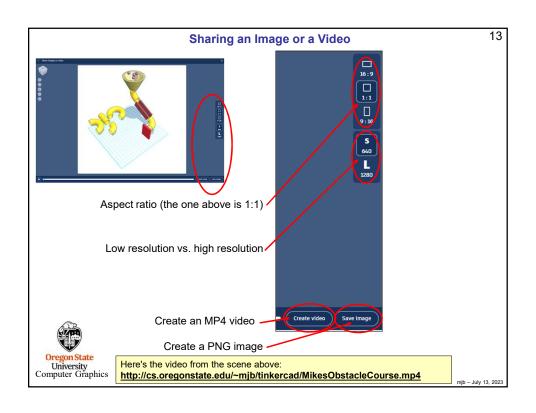


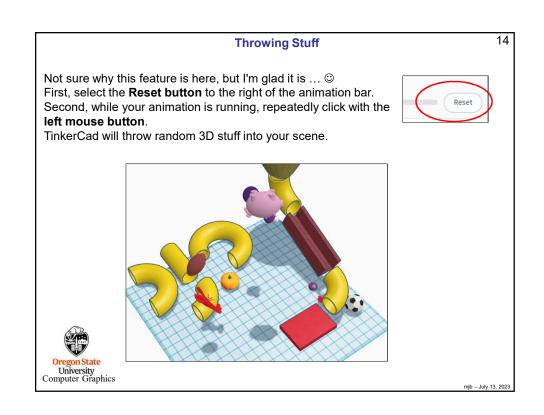



mjb – July 13, 202

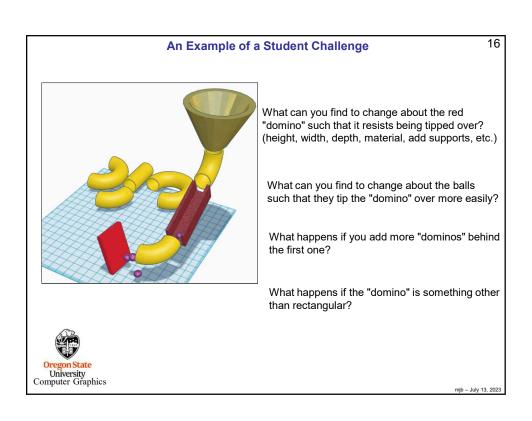


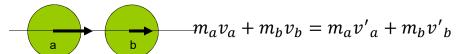





Density (g/cm^3)	1.30	2.30	0.92	2000	800	0.92	0.92	7.40	89'0	0.13	1.30	Density (g/cm^3)	000	200	130	050	000	0.92	1.30	800	0.92	0.13	7.40	Doneity (a /cm/3)	092	7.40	130	1.30	0.68	0.13	80:0	2.30	0.92	0.92	Density (g/cm^3)	0.00	130	0.13	89'0	2.30	0.92	7.40	1.30	0.92	Density (g/cm^3)	80.0	0.13	0.68	0.92	0.92	130	130	230	2 40
COR	090	0.75	0.75	0.0	0.50	0.30	0.95	0.85	0.70	0.65	06:0	COR	0.05	0.00	0.70	02.0	25.0	0.75	0.60	0.50	0.30	0.65	0.85	9	2 K	0.85	090	060	0.70	0.65	0.50	0.75	0.30	0.95	COR	0.30	090	0.65	0.70	0.75	0.75	0.85	0.90	0.95	COR	0.50	0.65	0.70	0.75	0.30	56.0	000	0.75	100
90	0.35	0.65	0.30	8 6	0.50	0.75	1.00	0.30	0.40	0.40	0.35	903	5 6	3 5	0.03	9 0	9 0	0.30	0.35	0.50	0.75	0.40	0.30	5	5 6	0:30	0.35	0.35	0.40	0.40	0.50	99:0	0.75	1.00	90	0.75	0.35	0.40	0.40	0.65	0.30	0.30	0.35	1.00	COF	0.50	0.40	0.40	0.30	0.73	1.00	0.35	0.65	000
Material	Plastic	Concrete	ao		Polystrene	Rubber	BouncyRubber	Steel	Hard Wood	Soft Wood	Grid	Material	RomorBubber	Control	Concrete	Died Weed	DOOM DIE		Piastic	Polystrene	Rubber	Soft Wood	Steel	Material	e de la companya de l	Steel	Plastic	Grid	Hard Wood	Soft Wood	Polystrene	Concrete	Rubber	BouncyRubber	Material	Rubber	Plactic	Soft Wood	Hard Wood	Concrete	ce	Steel	Grid	BouncyRubber	Material	Polystrene	Soft Wood	Hard Wood	lce	Rubber	BouncyRubber	Grid	Concrete	Condition
TinkerCad Order												By Material Name												By CDE	3										By COR										By Density									

10 As a Reference, Here are Some Other Coefficients of Friction Materials Dry & clean Lubricated Aluminum Steel 0.61 Steel 0.53 Copper 0.51 Brass Steel Cast iron 1.05 Copper Cast iron Zinc 0.85 Concrete Rubber 0.30 (wet) Concrete (dry) Rubber 1.0 Concrete Wood 0.62 Glass 0.68 Copper Glass 0.94 Glass Metal Wood 0.2-0.6 0.2 (wet) Polythene Steel 0.2 0.2 Steel Steel 0.80 0.16 Steel Teflon 0.04 0.04 Teflon Teflon 0.04 0.04 Wood Wood 0.25-0.5 0.2 (wet) Oregon State University Computer Graphics http://en.wikipedia.org/wiki/Friction mjb – July 13, 2023


11 As a Reference, Here are Some Other Coefficients of Restitution **Balls Bounced on a Concrete Surface: Ball Material** CoR range golf ball 0.858 tennis ball 0.712 billiard ball 0.804 hand ball 0.752 wooden ball 0.603 steel ball bearing 0.597 glass marble 0.658 ball of rubber bands 0.828 hollow, hard plastic ball http://hypertextbook.com/facts/2006/restitution.shtml mjb – July 13, 2023



What's Really Going On: The Physics of Collisions – Conservation of Momentum

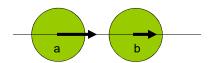
In a collision, the total momentum after the impact is equal to the total momentum before the impact. Always.

where the primes refer to velocities after the impact

This is referred to as the Conservation of Momentum Law

Momentum is always conserved through any collision

mjb – July 13, 2023

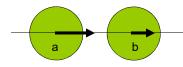

18

17

What's Really Going On: The Physics of Collisions – Coefficient of Restitution

In a collision, energy is conserved in the *entire system*, but not necessarily in the form of velocities. (It can become heat, light, permanent deformation, etc.)

This loss of velocity is expressed as the *Coefficient of Restitution* (COR). The COR, e, is how much less the relative velocities of the objects are after impact than they were before impact:


$$v'_b - v'_a = -e(v_b - v_a)$$

(the negative sign is there to indicate the "bounce")

mjb – July 13, 2023

What's Really Going On: The Physics of Collisions – Combining Momentum and Restitution Laws

Starting with these two equations:

$$m_a v_a + m_b v_b = m_a v'_a + m_b v'_b$$

 $v'_b - v'_a = -e(v_b - v_a)$

We then treat the two initial velocities as inputs and solve for the two resulting velocities. This gives:

$$v'_{a} = \frac{m_{a}v_{a} + m_{b}v_{b} + em_{b}(v_{b} - v_{a})}{m_{a} + m_{b}}$$
 $v'_{b} = \frac{m_{a}v_{a} + m_{b}v_{b} - em_{a}(v_{b} - v_{a})}{m_{a} + m_{b}}$

Oregon State
University
Computer Graphics

mjb - July 13, 2023

20

19

What's Really Going On: The Physics of Collisions with Immoveable Objects

To treat the case of mass b being an *immoveable object*, such as the ground or a solid wall, treat b as if its mass was infinite. Then solve for the resulting velocities:

$$\lim_{m_b \to \infty} v_a' = \frac{m_a v_a + m_b v_b + e m_b (v_b - v_a)}{m_a + m_b}$$

$$= \lim_{m_b \to \infty} \left[\frac{m_a v_a}{m_a + m_b} + \frac{m_b v_b}{m_a + m_b} + \frac{e m_b (v_b - v_a)}{m_a + m_b} \right]$$

$$= [0 + v_b + e (v_b - v_a)]$$

Since mass b is immoveable, its velocity must be zero, so that a's post-collision velocity is:

$$v'_a = [0 + 0 + e(0 - v_a)] = -ev_a$$

mjb – July 13, 202

What's Really Going On: Collisions – Experimentally Determining the Coefficient of Restitution

Velocities are hard to measure live, but distances are not.

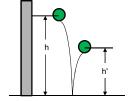
So, drop the object from a height ${\it h}$, and measure its bounce to a height ${\it h'}$:

Energy before the bounce:

$$v^2 = 0^2 + 2gh$$

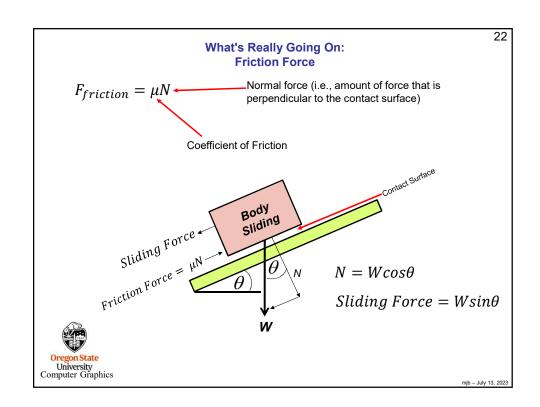
$$v = \sqrt{2gh}$$

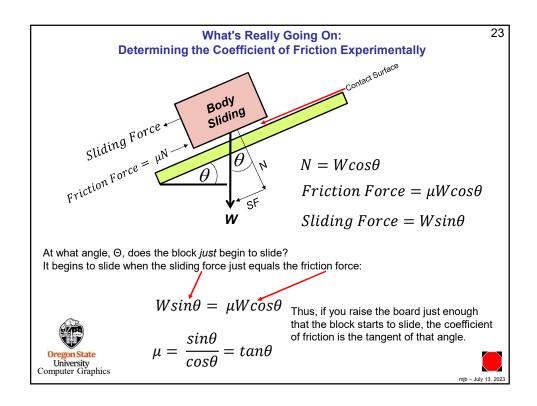
Energy after the bounce:


$$0^2 = v'^2 - 2gh'$$

$$v' = \sqrt{2gh'}$$

$$|v'| = e|v|$$




$$e = \frac{v'}{v} = \frac{\sqrt{2gh'}}{\sqrt{2gh}} = \sqrt{\frac{h'}{h}}$$

mjb – July 13, 2023

21

Mike Bailey

mjb@cs.oregonstate.edu

tinkercad.physics.pp