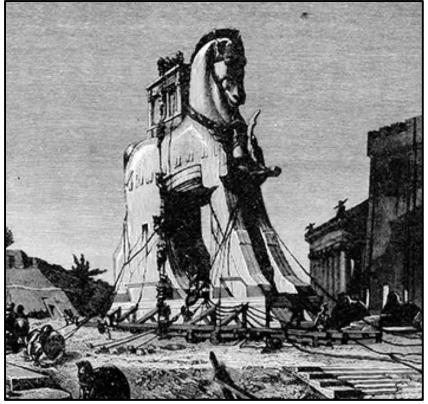
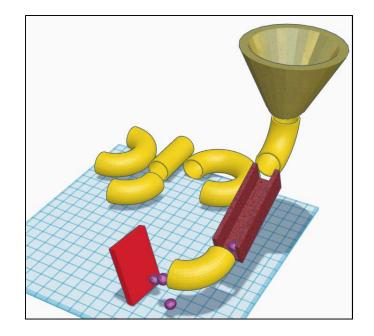
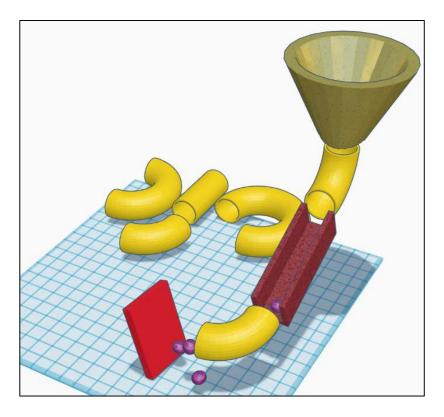
Building an Interest in Physics using TinkerCad!


Mike Bailey

mjb@cs.oregonstate.edu

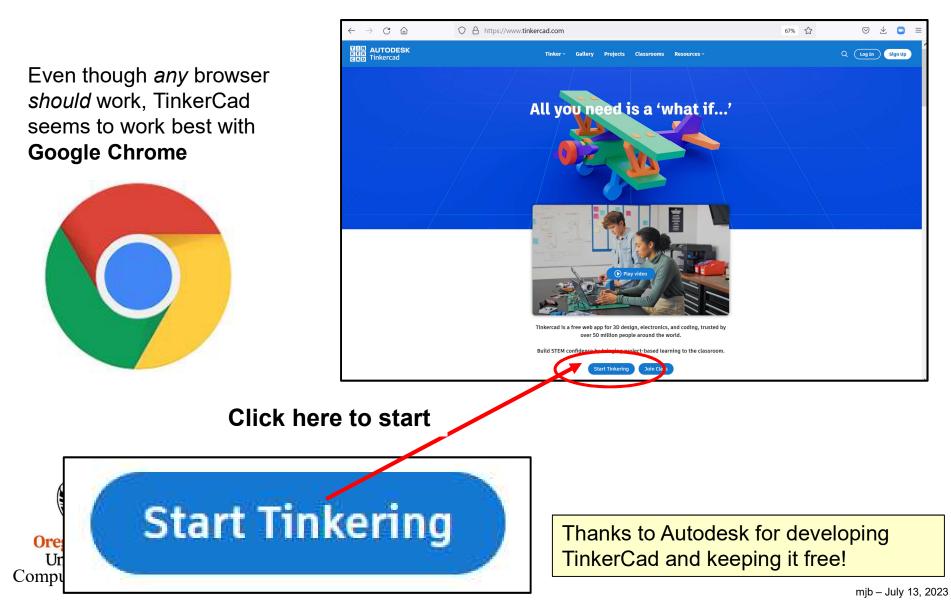

Trojan Horse Education

"Come for the cool animation, stay for the physics."

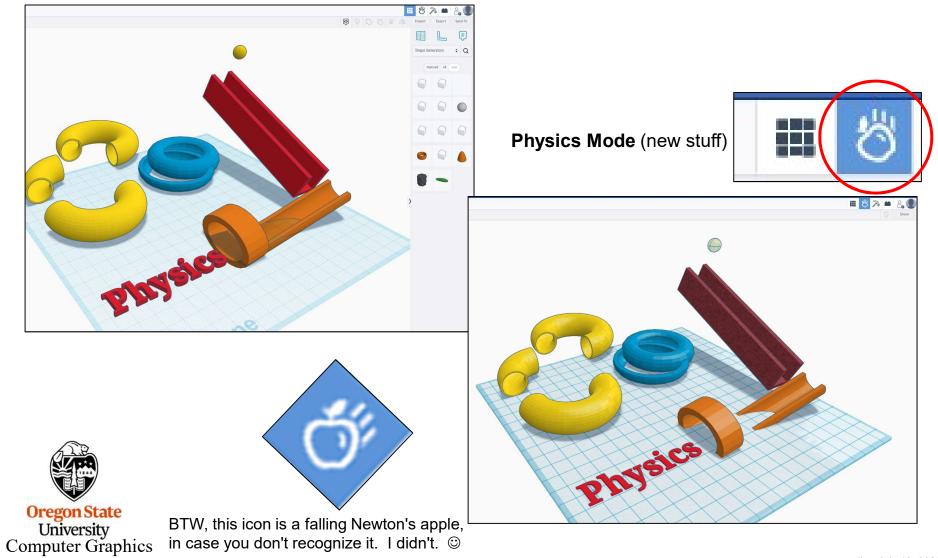

https://www.historyforkids.net/trojan-horse.html

Why Are We Talking About This?

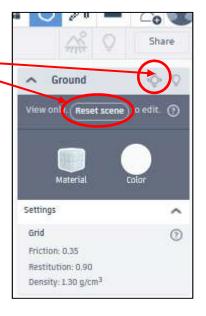
TinkerCad has always had a 3D Design Mode. Just recently, they added a Physics Mode they call **"SimLab".**

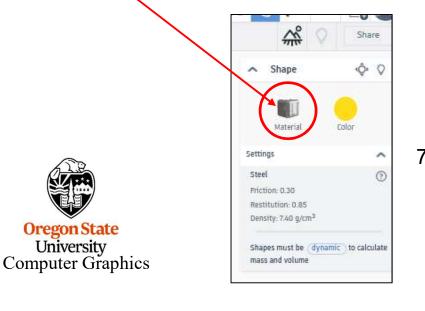

When you are in this mode of operation, TinkerCad objects can fall under the influence of gravity. They can collide with each other, slide along surfaces, and roll through tubes.

Getting Started


TinkerCad is a free web-based CAD package from AutoDesk It is a solid modeler, so you always have legal 3D objects suitable for 3D Printing You get to it at: **http://www.tinkercad.com/**

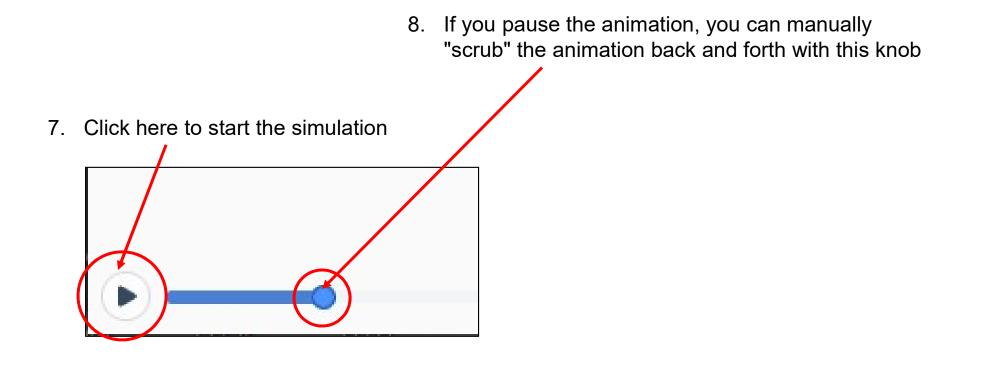
Design Mode vs. Physics Mode


Design Mode (what you're used to)

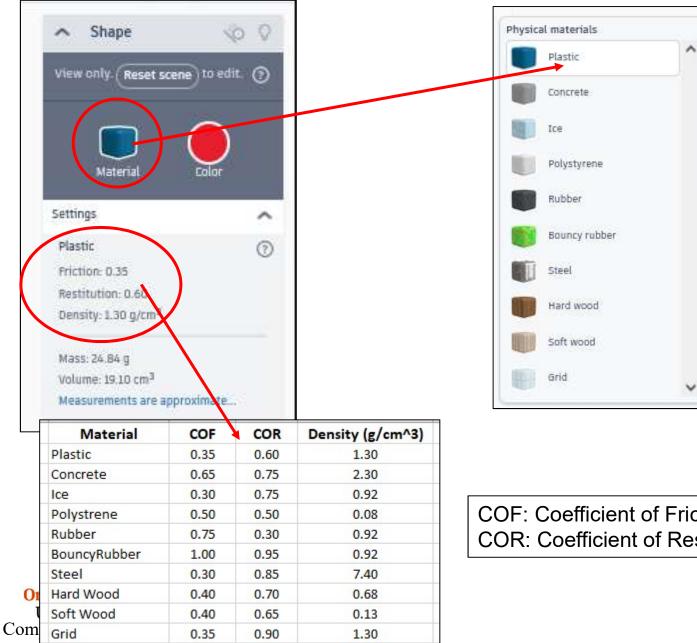


The Steps

- 1. Build a model as usual, keeping in mind what sort of motion you are going to want these objects to have.
- 2. Switch to Physics Mode.-
- 3. Open up the Scene Settings.
- 4. Click on Reset Scene. 👡
- 5. By default, all objects start out as "Dynamic", meaning that they will start falling when gravity is turned on. But, some objects need to be "Static" so that they can collide with other objects but do not start falling themselves. Select an object and then click here to toggle between Dynamic and Static.
- 6. Objects can be made of different materials. Select an object and click here to change its material. Look ahead in these notes to see what kind of physics properties each material has.



7. Click here to start the simulation.


mjb – July 13, 2023

Click in the Lower-Left Corner to Start the Physics Animation

Click on an Object in Physics Mode and Change its Material

v

COF: Coefficient of Friction ("stickiness") COR: Coefficient of Restitution ("bounciness")

Density (g/cm^3)	2.30	0.97	0.08	0.92	0.92	7.40	0.68	0.13	1.30	Density (g/cm^3)	0.92	2.30	0.68	0.92	1.30	0.08	0.92	7.40	Density (g/cm^3)	0.92	7.40	1.30	0.68	0.13	0.08	2.30	0.92	Density (g/cm^3)	0.92	0.08	1.30	0.13	0.68	0.92	7.40	1.30	0.92	Density (g/cm^3)	0.08	0.13	0.68	0.92	0.92	0.92	1.30 1.30	2.30	0.0
COR	0.75	0.75	0.50	0.30	0.95	0.85	0.70	0.65	0.90	COR	0.95	06.0	0.70	0.75	0.60	0.50	0.65	0.85	COR	0.75	0.85	06.0	0.70	0.65	0.50	0.75	0.95	COR	0.30	0.50	0.60	C0.0	0.75	0.75	0.85	06.0	0.95	COR	0.50	0.65	0.70	0.75	0.30	0.95	0.90	0.75	2
COF	0.65	0.30	0.50	0.75	1.00	0:30	0.40	0.40	0.35	COF	1.00	0.35	0.40	0:30	0.35	0.50	0.40 0.40	0.30	COF	0:30	0.30	0.35	0.40	0.40	0.50	0.65	1.00	COF	0.75	0.50	0.35	0.40	0.65	0:30	0.30	0.35	1.00	COF	0.50	0.40	0.40	0.30	0.75	1.00	0.35	0.65	2
Material	Plastic Concrete	100	Polvstrene	Rubber	BouncyRubber	Steel	Hard Wood	Soft Wood	Grid	Material	BouncyRubber	Grid	Hard Wood	Ice	Plastic	Polystrene	Soft Wood	Steel	Material	Ice .	Steel	Grid	Hard Wood	Soft Wood	Polystrene	Concrete	BouncyRubber	Material	Rubber	Polystrene	Plastic	Soft Wood	Hard Wood	lce	Steel	Grid	BouncyRubber	Material	Polystrene	Soft Wood	Hard Wood	lce	Rubber	BouncyRubber	Flastic	Concrete	
TinkerCad Order										By Material Name									By COF									Bv COR										By Density									

COF: Coefficient of Friction ("stickiness") COR: Coefficient of Restitution ("bounciness")

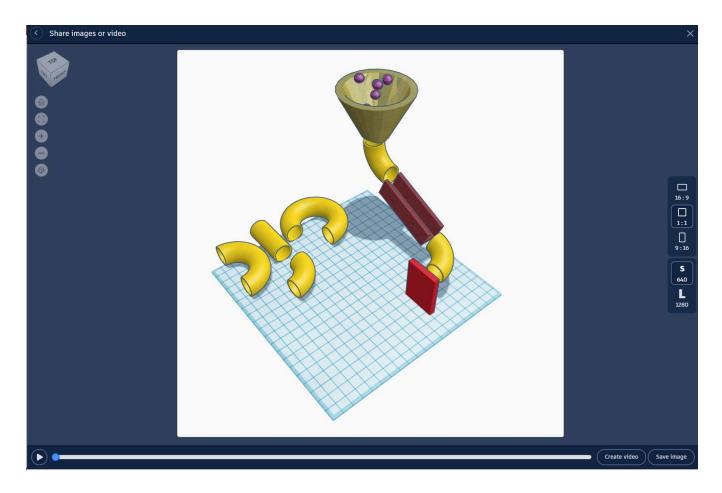
Oregon State University Computer Graphics

As a Reference, Here are Some Other Coefficients of Friction

Mate	erials	μ								
Matt		Dry & clean	Lubricated							
Aluminum	Steel	0.61								
Copper	Steel	0.53								
Brass	Steel	0.51								
Cast iron	Copper	1.05								
Cast iron	Zinc	0.85								
Concrete (wet)	Rubber	0.30								
Concrete (dry)	Rubber	1.0								
Concrete	Wood	0.62								
Copper	Glass	0.68								
Glass	Glass	0.94								
Metal	Wood	0.2–0.6	0.2 (wet)							
Polythene	Steel	0.2	0.2							
Steel	Steel	0.80	0.16							
Steel	Teflon	0.04	0.04							
Teflon	Teflon	0.04	0.04							
Wood	Wood	0.25–0.5	0.2 (wet)							

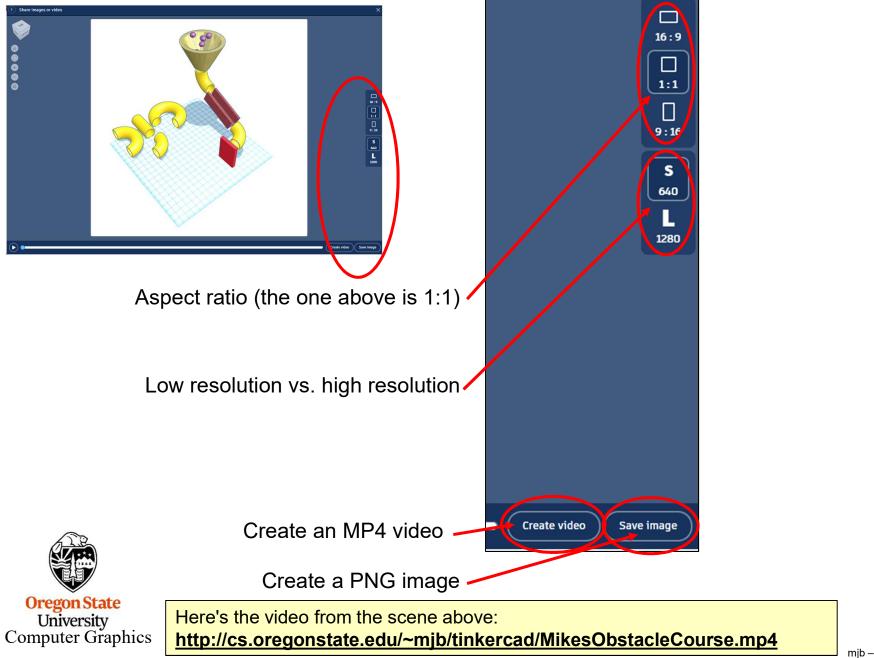
http://en.wikipedia.org/wiki/Friction

Ball Material	CoR
range golf ball	0.858
tennis ball	0.712
billiard ball	0.804
hand ball	0.752
wooden ball	0.603
steel ball bearing	0.597
glass marble	0.658
ball of rubber bands	0.828
hollow, hard plastic ball	0.688


Balls Bounced on a Concrete Surface:

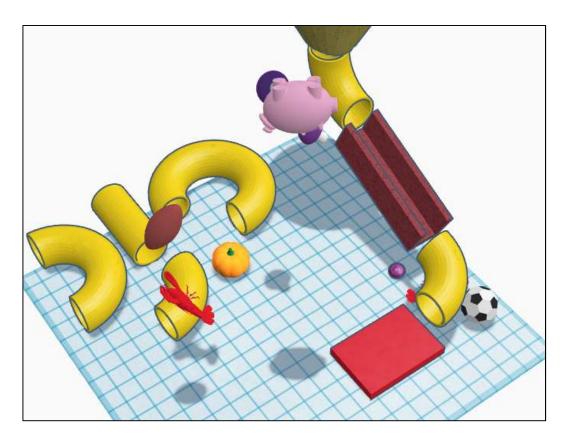
http://hypertextbook.com/facts/2006/restitution.shtml

Sharing an Image or a Video



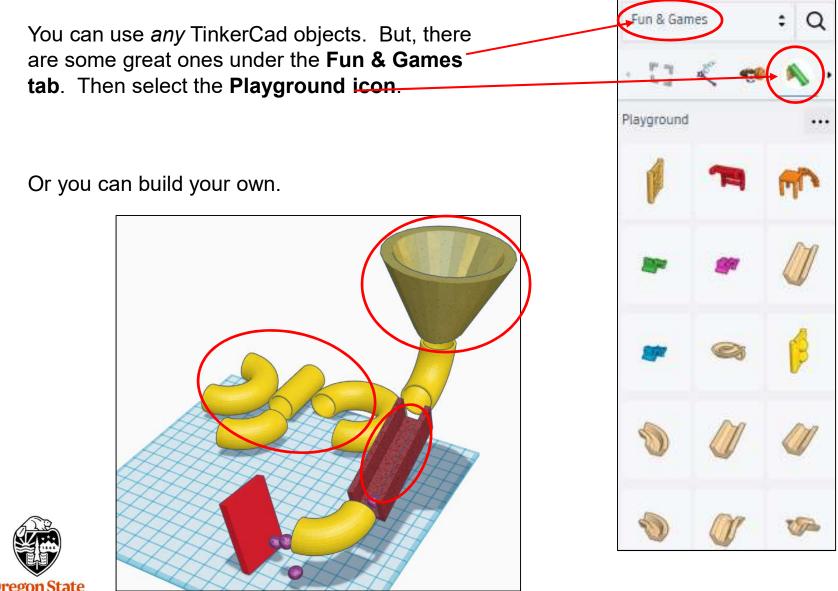
To reach this screen:

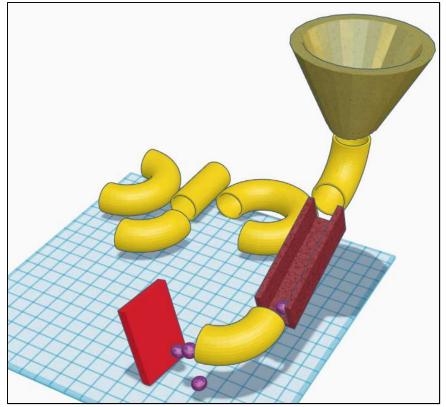
Sharing an Image or a Video



Throwing Stuff

Not sure why this feature is here, but I'm glad it is ... First, select the **Reset button** to the right of the animation bar. Second, while your animation is running, repeatedly click with the **left mouse button**.


TinkerCad will throw random 3D stuff into your scene.


mjb – July 13, 2023

Hints on Building a Physics-Cool Scene

Oregon State University Computer Graphics

An Example of a Student Challenge

What can you find to change about the red "domino" such that it resists being tipped over? (height, width, depth, material, add supports, etc.)

What can you find to change about the balls such that they tip the "domino" over more easily?

What happens if you add more "dominos" behind the first one?

What happens if the "domino" is something other than rectangular?

What's Really Going On: The Physics of Collisions – Conservation of Momentum

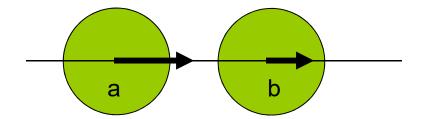
In a collision, the total momentum after the impact is equal to the total momentum before the impact. Always.

$$\begin{array}{c} \hline \\ a \end{array} \begin{array}{c} \hline \\ b \end{array} \begin{array}{c} m_a v_a + m_b v_b = m_a v'_a + m_b v'_b \end{array} \end{array}$$

where the primes ' refer to velocities after the impact

This is referred to as the *Conservation of Momentum Law*

Momentum is *always* conserved through *any* collision

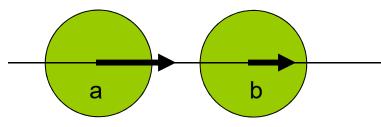


Oregon State University Computer Graphics

What's Really Going On: The Physics of Collisions – Coefficient of Restitution

In a collision, energy is conserved in the *entire system*, but not necessarily in the form of velocities. (It can become heat, light, permanent deformation, etc.)

This loss of velocity is expressed as the **Coefficient of Restitution** (COR). The COR, *e*, is how much less the relative velocities of the objects are after impact than they were before impact:



$$v'_b - v'_a = -e(v_b - v_a)$$

(the negative sign is there to indicate the "bounce")

What's Really Going On: The Physics of Collisions – Combining Momentum and Restitution Laws

Starting with these two equations:

$$m_a v_a + m_b v_b = m_a v'_a + m_b v'_b$$

$$v'_b - v'_a = -e(v_b - v_a)$$

We then treat the two initial velocities as inputs and solve for the two resulting velocities. This gives:

$$v'_{a} = \frac{m_{a}v_{a} + m_{b}v_{b} + em_{b}(v_{b} - v_{a})}{m_{a} + m_{b}}$$
$$v'_{b} = \frac{m_{a}v_{a} + m_{b}v_{b} - em_{a}(v_{b} - v_{a})}{m_{a} + m_{b}}$$

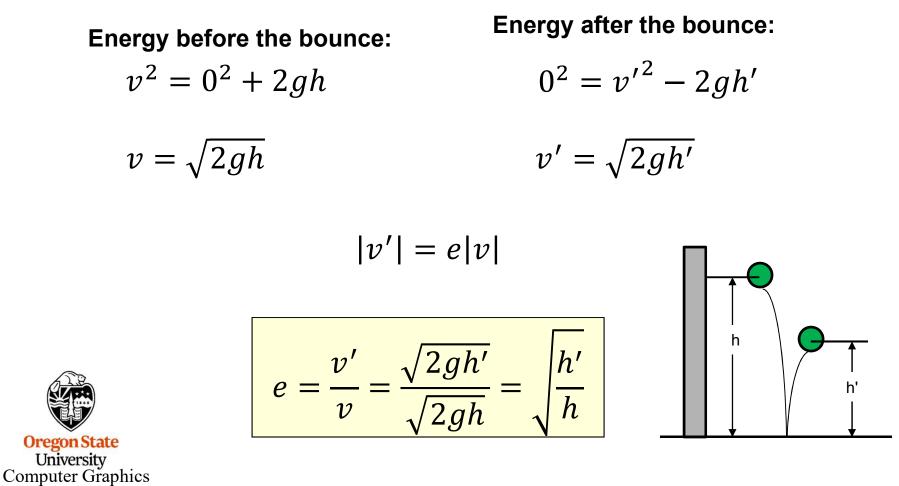
Computer Graphics

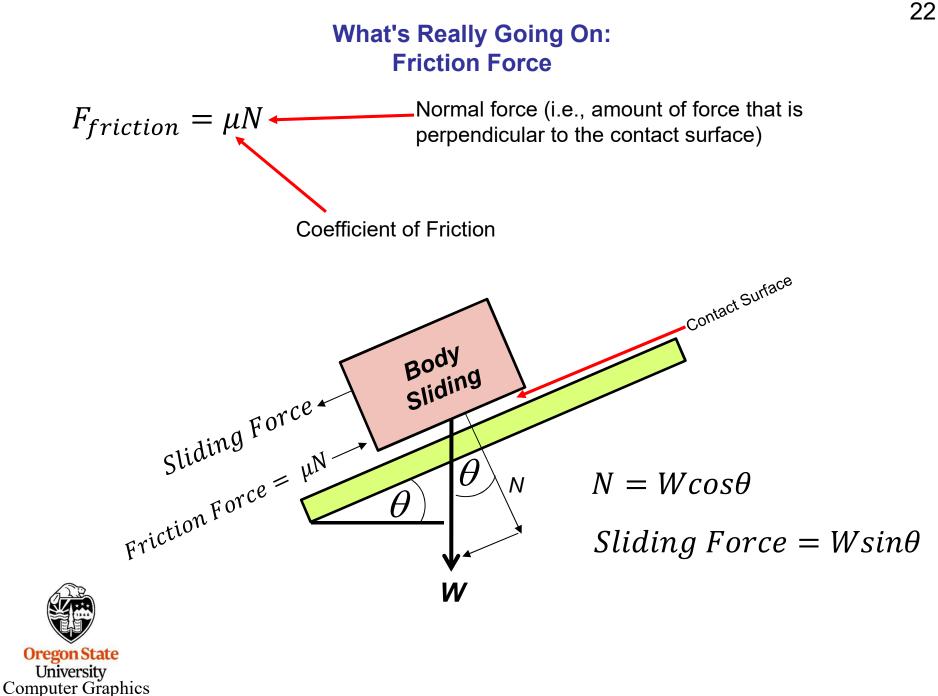
What's Really Going On: The Physics of Collisions with Immoveable Objects

To treat the case of mass b being an *immoveable object*, such as the ground or a solid wall, treat b as if its mass was infinite. Then solve for the resulting velocities:

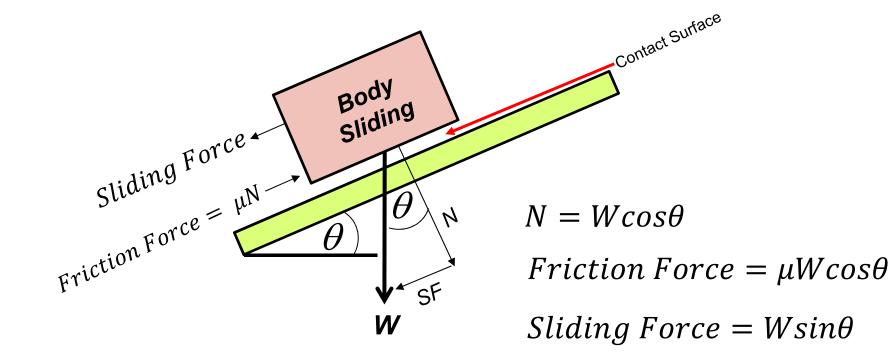
$$\lim_{m_b \to \infty} v'_a = \frac{m_a v_a + m_b v_b + em_b (v_b - v_a)}{m_a + m_b}$$
$$= \lim_{m_b \to \infty} \left[\frac{m_a v_a}{m_a + m_b} + \frac{m_b v_b}{m_a + m_b} + \frac{em_b (v_b - v_a)}{m_a + m_b} \right]$$
$$= [0 + v_b + e(v_b - v_a)]$$

Since mass b is immoveable, its velocity must be zero, so that a's post-collision velocity is:


$$v'_a = [0 + 0 + e(0 - v_a)] = -ev_a$$

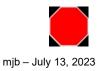

Oregon State University Computer Graphics

What's Really Going On: Collisions – Experimentally Determining the Coefficient of Restitution


Velocities are hard to measure live, but distances are not.

So, drop the object from a height **h**, and measure its bounce to a height **h'**:

What's Really Going On: Determining the Coefficient of Friction Experimentally

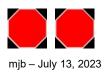

At what angle, Θ, does the block *just* begin to slide? It begins to slide when the sliding force just equals the friction force:

$$Wsin\theta = \mu Wcos\theta$$

Oregon State University Computer Graphics

$$\mu = \frac{\sin\theta}{\cos\theta} = \tan\theta$$

Thus, if you raise the board just enough that the block starts to slide, the coefficient of friction is the tangent of that angle.


Building an Interest in Physics using TinkerCad!

Mike Bailey

mjb@cs.oregonstate.edu

