
Load-Balanced Pipeline Parallelism

Md Kamruzzaman Steven Swanson Dean M. Tullsen

Computer Science and Engineering
University of California, San Diego

{mkamruzz,swanson,tullsen}@cs.ucsd.edu

ABSTRACT
Accelerating a single thread in current parallel systems remains

a challenging problem, because sequential threads do not natu-
rally take advantage of the additional cores. Recent work shows
that automatic extraction of pipeline parallelism is an effective way
to speed up single thread execution. However, two problems re-
main challenging – load balancing and inter-thread communica-
tion. This work shows new mechanism to exploit pipeline paral-
lelism that naturally solves the load balancing and communication
problems. This compiler-based technique automatically extracts
the pipeline stages and executes them in a data parallel fashion,
using token-based chunked synchronization to handle sequential
stages. This technique provides linear speedup for several appli-
cations, and outperforms prior techniques to exploit pipeline par-
allelism by as much as 50%.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors–Optimization

General Terms
Languages, Performance

Keywords
pipeline parallelism, load-balancing, chip multiprocessors, locality,
compilers

1. INTRODUCTION
The number of cores per die on multicore processors increases

with each processor generation. However, many applications fail
to scale with the increased hardware parallelism. Several factors
account for this, but this research is most concerned with key ap-
plications that are difficult to parallelize due to data dependences in
the key loops, making the code highly sequential.

Previous work on decoupled software pipelining [18, 19, 21] ad-
dresses this problem and shows that fine-grained pipeline paral-
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SC’13, November 17–21, 2013, Denver, Colorado, USA.
Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2503210.2503295.

lelism applied at the loop level can be very effective in speeding
up some serial codes, including irregular codes like pointer chas-
ing. In this case, the compiler automatically divides the loop into a
set of pipeline stages (each stage can be sequential or parallel) and
maps them to different cores to achieve parallel execution while
still maintaining all the dependencies. However, several issues
make the technique still challenging in practice. First, the cores of-
ten remain underutilized because of the imbalance in the pipeline,
sacrificing performance and wasting energy. Second, the technique
sacrifices the existing locality between stages, communicating data
that was originally local across cores, again sacrificing both per-
formance and power/energy. Finally, the technique typically works
best with the number of threads at least equal to the number of
stages, requiring the compiler to know a priori the number of cores
available, and causing inefficient execution when the counts do not
match.

This paper describes load-balanced pipeline parallelism (LBPP)
which exploits the same pipeline parallelism as prior work, but
assigns work to threads in a completely different manner, main-
taining locality and naturally creating load balance. While prior
pipeline parallelism approaches executes a different stage on each
core, LBPP executes all the stages of a loop iteration on the same
core, but achieves pipeline parallelism by distributing different iter-
ations to the available cores and using token based synchronization
to handle sequential stages. It groups together several iterations of
a single stage, though, before it moves to the next stage.

LBPP is inherently load-balanced, because each thread does the
same work (for different iterations). It maintains locality because
same-iteration communication never crosses cores. The generated
code is essentially the same no matter how many cores are targeted
– thus the number of stages and the thread count are decoupled and
the thread count can be determined at runtime and even change dur-
ing runtime. Prior techniques must recompile to perform optimally
with a different core count.

LBPP is a software only technique and runs on any cache coher-
ent system. In this work, we present a compiler and runtime system
that implements LBPP, and demonstrate how LBPP extracts max-
imum possible parallelism for any number of cores. We find that
chunking is the key to making LBPP effective on the real machines.
Chunking groups several iterations of a single stage together before
the thread moves on to the next stage (executing the same chunk of
iterations of that stage). Thus, chunking reduces the frequency of
synchronization by clustering the loop iterations. Instead of syn-
chronizing at each iteration, we only synchronize (and communi-
cate) at chunk boundaries. Chunking appropriately allows us to
maximize locality within a target cache.

In this work, we describe the implementation of LBPP under
Linux and evaluate it on two multicore systems. We experiment
with different microbenchmarks, focused on particular aspects of
LBPP to characterize the technique better, and then apply it on a
wide range of real applications (both regular and irregular). LBPP
provides 1.7× to 3.2× speedup on AMD Phenom, and 1.6× to
2.3× on Intel Nehalem on average, depending on the core counts
for individual loops. Considering application level speedup, some
irregular applications see as large as 5.4× speedup over the single
thread execution. We also compare LBPP with decoupled software
pipelining. LBPP outperforms decoupled software pipelining by
60% to 88% on the loop level for a particular core count (three
cores) because of better load balancing and locality. The energy
savings can be more than 50% for some applications.

The remainder of this paper is organized as follows: Section 2
discusses load-balanced pipeline parallelism in the context of prior
work. Section 3 describes the technique in detail. Section 4 shows
the compiler implementation. Sections 5 and 6 demonstrate our
methodology and results, and Section 7 concludes.

2. RELATED WORK
There have been several works that seek to accelerate single

thread execution on parallel hardware.
Decoupled software pipelining [18, 21] (DSWP) is a non-

speculative technique that exploits pipeline parallelism on the loop
level. Using dependence analysis, it automatically partitions an it-
eration of the loop into several stages and executes them in different
processing units in a pipelined fashion to extract parallelism. Ra-
man, et al. [19] propose parallel-stage DSWP that identifies some
stages as parallel and executes them in a data parallel manner.
LBPP adopts their concept of separating the loop iteration into a
set of sequential stages or a mix of sequential and parallel stages,
but the execution model is different. Unlike DSWP, which assumes
hardware support for efficient synchronization and core to core
communications, LBPP uses chunking to amortize synchronization
overhead and naturally exploits locality to reduce inter-core com-
munication.

DOACROSS [1, 6, 8] is another widely studied technique that
distributes loop iterations like LBPP to extract parallelism, but it
does not support arbitrary control flow inside the loop body. So,
pointer chasing loops or loops with unknown bounds do not get ad-
vantages. In addition, DOACROSS does not distinguish between
sequential and parallel stages, which is critical for load balancing
and better utilization of processors. LBPP provides an efficient ex-
ecution model (evaluated in the context of state of the art multi-
cores) that ensures maximum possible parallelism for any number
of cores even for irregular loops. Chen and Yew [4] focus on depen-
dence graph partitioning to reduce synchronization overhead for
DOACROSS loops. LBPP can use their algorithm as well to con-
struct the pipeline. Loop distribution [12] splits a loop into several
loops by isolating the parts that are parallel (have no cross iteration
dependencies) from the parts that are not parallel and can leverage
data parallelism.

Helper thread prefetching [11, 14, 15] is a special form of
pipeline parallelism, because it pipelines memory accesses with the
computation. In this case, prefetch threads can execute in either
separate SMT contexts (targets the L1 cache) or in separate cores
(targets shared cache) in parallel. Inter-core prefetching [11] adds
thread migrations on top of helper thread prefetching to access the
prefetched data locally. It uses chunking in a very similar manner

to LBPP. LBPP can naturally treat prefetching as an extra stage in
the pipeline.

Data Spreading [10] is another software technique that uses
thread migrations to spread out the working set to leverage the ag-
gregate cache space. LBPP, when executed with more than the ex-
pected number of cores, provides similar benefit.

Speculative multithreading [16, 23] ignores some of the depen-
dence relationships to execute different parts of the serial execution
in parallel and verify the correctness at runtime. Vachharajani, et
al. [26] speculate on a few dependencies to extract more pipeline
stages in DSWP. They use a special commit thread for the recov-
ery process. Spice [20] uses value prediction of the loop live-ins to
enable speculative threading. Huang, et al. [9] combine speculative
parallelization with parallel stage DSWP. LBPP is non-speculative
and orthogonal to the speculative techniques.

There have been several works on pipeline parallelism [2, 7, 13,
17]. Navarro, et al. [17] gives an analytical model for pipeline par-
allelism using queuing theory to estimate the performance. Bienia,
et al. [2] use PCA analysis to characterize pipeline applications
from data parallel applications. Communications between differ-
ent pipeline stages is shown to be an important component. The
cache-optimized lock-free queue [7] is a software construct that re-
duces communication overhead. Lee, et al. [13] propose hardware
solutions to the queuing overhead. Chen, et al. [5] improves DSWP
using a lock-free queue. LBPP does all its core to core communica-
tions through shared memory and does not require special queues.

Load balancing among threads has also received attention in the
past. Work stealing [3] is a common scheduling technique where
cores that are out of work steal threads from other cores. Feedback-
driven threading [25] shows, analytically, how to dynamically con-
trol the number of threads to improve performance and power con-
sumption. Suleman, et al. [24] propose a dynamic approach to load
balancing for pipeline parallelism. Their technique tries to find the
limiter stage at runtime and allocates more cores to it. They as-
sume at least one core per stage. Sanchez, et al. [22] use task steal-
ing with per-stage queues and a queue backpressure mechanism to
enable dynamic load balancing for pipeline parallelism. LBPP is
inherently load balanced.

3. LOAD-BALANCED PIPELINE PARAL-
LELISM

Load-balanced pipeline parallelism exploits the pipeline paral-
lelism available in the loops of applications and executes them in
a data parallel fashion. It uses token-based synchronization to en-
sure correct execution of sequentially dependent code and reduces
synchronization overhead using chunking. The iteration space is
divided into a set of chunks and participating threads execute them
in round-robin order. The technique can handle both regular and
irregular codes.

Next, we give an overview of pipeline parallelism and then de-
scribe LBPP.

3.1 Pipeline parallelism
Pipeline parallelism is one of the three types of parallelism that

we see in applications (vs. data parallelism and task parallelism).
Pipeline parallelism works like an assembly line and exploits the
producer-consumer relationship. There are several pipeline stages
and each stage consumes data produced by previous stages. This
maintains the dependences between different stages. The paral-

for(i=1;i<N;i++) {

a[i] = a[i-1] + a[i];

b[i] = b[i-1] + a[i];

c[i] = c[i-1] + b[i];

}

(a) Regular loop

while(p != NULL) {

p->s += p->left->s;

p = p->next;

}

p=p->next

p=p->next

p=p->next

p=p->next

p=p->next

p->s += p->left->s

p->s += p->left->s

p->s += p->left->s

p->s += p->left->s

p->s += p->left->s

(b) Irregular loop
SS-1 SS-2 SS-3 SS-1 PS-1

a1=a0+a1

a2=a1+a2

a3=a2+a3

a4=a3+a4

a5=a4+a5

b1=b0+a1

b2=b1+a2

b3=b2+a3

b4=b3+a4

b5=b4+a5

c1=c0+b1

c2=c1+b2

c3=c2+b3

c4=c3+b4

c5=c4+b5

for(i=1;i<N;i++) {

a[i] = a[i-1] + a[i];

b[i] = b[i-1] + a[i];

c[i] = c[i-1] + b[i];

}

(a) Regular loop

while(p != NULL) {

p->s += p->left->s;

p = p->next;

}

p=p->next

p=p->next

p=p->next

p=p->next

p=p->next

p->s += p->left->s

p->s += p->left->s

p->s += p->left->s

p->s += p->left->s

p->s += p->left->s

p=p->nextp=p->next

p=p->nextp=p->next

p=p->nextp=p->next

p=p->nextp=p->next

p=p->nextp=p->next

p->s += p->left->s

p->s += p->left->s

p->s += p->left->s

p->s += p->left->s

p->s += p->left->s

(b) Irregular loop
SS-1 SS-2 SS-3 SS-1 PS-1

a1=a0+a1

a2=a1+a2

a3=a2+a3

a4=a3+a4

a5=a4+a5

b1=b0+a1

b2=b1+a2

b3=b2+a3

b4=b3+a4

b5=b4+a5

c1=c0+b1

c2=c1+b2

c3=c2+b3

c4=c3+b4

c5=c4+b5

a1=a0+a1a1=a0+a1

a2=a1+a2a2=a1+a2

a3=a2+a3a3=a2+a3

a4=a3+a4a4=a3+a4

a5=a4+a5a5=a4+a5

b1=b0+a1b1=b0+a1

b2=b1+a2b2=b1+a2

b3=b2+a3b3=b2+a3

b4=b3+a4b4=b3+a4

b5=b4+a5b5=b4+a5

c1=c0+b1c1=c0+b1

c2=c1+b2c2=c1+b2

c3=c2+b3c3=c2+b3

c4=c3+b4c4=c3+b4

c5=c4+b5c5=c4+b5

Figure 1: Examples of loop level pipeline parallelism for regular and irregular loops. The arcs show the dependency relationships.

for(i=1;i<N;i++) {

a[i] = a[i-1] + a[i];

b[i] = b[i-1] + a[i];

c[i] = c[i-1] + b[i];

}

while(not done) {
s = chunk.start, t = chunk.end;
SS1:
wait_for_token(1);
for(i=s;i<t;i++) a[i] = a[i-1] + a[i];
release_token(1);
SS2:
wait_for_token(2);
for(i=s;i<t;i++) b[i] = b[i-1] + a[i];
release_token(2);
SS3:
wait_for_token(3);
for(i=s;i<t;i++) c[i] = c[i-1] + b[i];
release_token(3);

}

Thread-0 Thread-1 Thread-2LBPP ImplementationSerial Implementation

a1=a0+a1
a2=a1+a2

b1=b0+a1
b2=b1+a2

c1=c0+b1
c2=c1+b2

a7=a6+a7
a8=a7+a8

b7=b6+a7
b8=b7+a8

a3=a2+a3
a4=a3+a4

b3=b2+a3
b4=b3+a4

c3=c2+b3
c4=c3+b4

a9=a8+a9
a10=a9+a10

b9=b8+a9
b10=b9+a10

a5=a4+a5
a6=a5+a6

b5=b4+a5
b6=b5+a6

c5=c4+b5
c6=c5+b6

a11=a10+a11
a12=a11+a12

b11=b10+a11
b12=b11+a12

for(i=1;i<N;i++) {

a[i] = a[i-1] + a[i];

b[i] = b[i-1] + a[i];

c[i] = c[i-1] + b[i];

}

while(not done) {
s = chunk.start, t = chunk.end;
SS1:
wait_for_token(1);
for(i=s;i<t;i++) a[i] = a[i-1] + a[i];
release_token(1);
SS2:
wait_for_token(2);
for(i=s;i<t;i++) b[i] = b[i-1] + a[i];
release_token(2);
SS3:
wait_for_token(3);
for(i=s;i<t;i++) c[i] = c[i-1] + b[i];
release_token(3);

}

Thread-0 Thread-1 Thread-2LBPP ImplementationSerial Implementation

a1=a0+a1
a2=a1+a2
a1=a0+a1
a2=a1+a2

b1=b0+a1
b2=b1+a2
b1=b0+a1
b2=b1+a2

c1=c0+b1
c2=c1+b2
c1=c0+b1
c2=c1+b2

a7=a6+a7
a8=a7+a8
a7=a6+a7
a8=a7+a8

b7=b6+a7
b8=b7+a8
b7=b6+a7
b8=b7+a8

a3=a2+a3
a4=a3+a4
a3=a2+a3
a4=a3+a4

b3=b2+a3
b4=b3+a4
b3=b2+a3
b4=b3+a4

c3=c2+b3
c4=c3+b4
c3=c2+b3
c4=c3+b4

a9=a8+a9
a10=a9+a10
a9=a8+a9

a10=a9+a10

b9=b8+a9
b10=b9+a10
b9=b8+a9

b10=b9+a10

a5=a4+a5
a6=a5+a6
a5=a4+a5
a6=a5+a6

b5=b4+a5
b6=b5+a6
b5=b4+a5
b6=b5+a6

c5=c4+b5
c6=c5+b6
c5=c4+b5
c6=c5+b6

a11=a10+a11
a12=a11+a12
a11=a10+a11
a12=a11+a12

b11=b10+a11
b12=b11+a12
b11=b10+a11
b12=b11+a12

Figure 2: Implementation and execution of LBPP for a regular loop with a chunk size of 2 iterations that uses three threads.

lelism in this case is on the order of the number of stages. Pipeline
parallelism can be coarse-grain or fine-grain.

In this work, we are interested in fine-grain pipeline parallelism
extracted from loops in conventional code. Pipeline parallelism
might exist in both regular and irregular loops. Figure 1 shows ex-
amples of pipeline parallelism in both types of loop. It also depicts
the two different types of dependency relationships that exist be-
tween stages – intra-iteration dependency, and cross-iteration de-
pendency. The former denotes the dependency between two stages
in the same loop iteration whereas the latter represents a depen-
dence to stages from previous iterations.

The regular loop in Figure 1(a) has three pipeline stages – SS1,
SS2, and SS3. SS1 has no intra-iteration dependency (no incoming
arcs from different stages), but has a cross-iteration dependency.
SS2, and SS3 have both types of dependencies. All three stages in
this case are sequential because of the cross-iteration dependency.
We can map each stage to a separate core and execute the stages in
parallel while still maintaining all the dependencies. Prior works
describe this technique as decoupled software pipelining [21]. The
maximum possible parallelism for this loop is 3× assuming there
are a sufficient number of iterations and all three stages are per-
fectly balanced.

Figure 1(b) shows the availability of pipeline parallelism in an
irregular loop. In this case, SS1 is a sequential stage that does
the pointer chasing. It has cross-iteration dependency but no intra-
iteration dependency. Stage PS1 updates each node pointed to by p
and depends only on SS1 computed in the same iteration. PS1 has
no cross-iteration dependency and it is possible to compute differ-
ent iterations concurrently for this stage, i.e. PS1 is a parallel stage.
So, this irregular loop has a pipeline of one sequential and one par-

allel stage. We can use one thread for the sequential stage, and
one or more for the parallel one to get a pipelined execution. Prior
works address this form of execution as parallel-stage decoupled
software pipelining (PS-DSWP) [19]. Assuming we have enough
cores, the maximum possible parallelism for this loop is determined
by the relative weight of the sequential stage because we must use
one thread for the sequential stage, but can use as many as neces-
sary to make the parallel stage non-critical.

3.2 Load-balanced pipeline parallelism
A pipelined loop (regular or irregular) has at least two stages

including zero or more parallel stages. The traditional approach
(DSWP or PS-DSWP) maps different stages to each core (or mul-
tiple cores, for parallel stages) and protects the intra-iteration de-
pendency using synchronization. The cross-iteration dependency,
on the other hand, is automatically satisfied by the program order.
We use the term traditional pipelining (TPP for traditional pipeline
parallelism) to refer to such execution.

Load-balanced pipeline parallelism executes all stages of a par-
ticular loop iteration in the same core, but distributes the iterations
between cores in a manner more similar to conventional data par-
allel execution (which lacks the dependence edges). First, it splits
the loop iterations into a set of chunks, and consecutive chunks of
the same stage are executed on different cores. LBPP executes all
the stages of a chunk sequentially in a single core. It will execute
several iterations (a chunk) of stage 1, followed by the same iter-
ations of stage 2, etc. Once all the stages are finished, the thread
starts executing the next assigned chunk, starting again at the first
stage. LBPP maps the chunks to threads in round robin order.

This correctly handles parallel stages, because they do not have

while(p != NULL) {

p->s+=p->left->s;

p = p->next;
}

while(not done) {
wait_for_token(1);
p = liveins.p;
for(i=1;i<=k && p;i++) {

buf[i] = p; p = p->next;
}
liveins.p = p; count = i;
release_token(1);
for(i=1;i<=count;i++) {

p=buf[i]; p->s+=p->left->s;
}

}

LBPP ImplementationSerial Implementation

SS1

PS1

while(p != NULL) {

p->s+=p->left->s;

p = p->next;
}

while(not done) {
wait_for_token(1);
p = liveins.p;
for(i=1;i<=k && p;i++) {

buf[i] = p; p = p->next;
}
liveins.p = p; count = i;
release_token(1);
for(i=1;i<=count;i++) {

p=buf[i]; p->s+=p->left->s;
}

}

LBPP ImplementationSerial Implementation

SS1

PS1

Figure 3: Implementation of LBPP for an irregular loop with a
chunk size of k iterations.

any cross-iteration dependency, and the program order satisfies the
intra-iteration dependency. However, sequential stages have cross-
iteration dependencies. LBPP handles that with a simple token-
based synchronization mechanism. There is a token for each se-
quential stage. Each thread waits for the corresponding token be-
fore executing a sequential stage. In that way, all of the iterations
of a sequential stage execute in order – they execute in order on
a single core within a chunk, and across chunks, the order is pro-
tected by token synchronization. The parallel stages do not require
tokens and LBPP executes them immediately. Once a sequential
stage finishes execution, the current thread hands over the token to
the next thread. Thus, the tokens move between threads in round
robin order and guarantee serial execution of a sequential stage.

LBPP obtains concurrency in two ways – (1) between stages, as
threads are typically working on different stages at different times,
and (2) within parallel stages, as any thread can enter the parallel
stage without regard to whether other threads are in the same stage.

Figure 2 shows the LBPP implementation of the regular loop in
Figure 1(a) using an artificially small chunk size of two iterations.
Unlike traditional pipelining, all three threads in this case execute
the same function. In TPP, we need to design separate functions for
each pipeline stage, and then add synchronization.

LBPP manages irregular loops similarly. Figure 3 shows the
LBPP implementation of the pointer chasing loop from Figure 1(b).
The sequential stage, upon receiving the token, gets the start value
of p from the previous thread. Then, it does the pointer chasing
for k iterations and enqueues the pointers in a thread local buffer.
After that, it forwards the current value of p to the next thread and
releases the token. The parallel stage dequeues the sequence of
pointers from the local buffer and does the update operation. Thus,
the local buffer transfers data from the sequential stage to the par-
allel stage and serves the same purpose as software queues do in
TPP. Note that queues/local buffers may not always be necessary.
The regular loop mentioned above is an example of that.

The performance of LBPP depends heavily on the chunk size.
We define chunk size as the approximate memory footprint of a
chunk that includes both the memory accesses done by the original
loop itself, and the additional memory accesses to the local buffer.
Chunk size is highly correlated with the synchronization and data
sharing overhead. Larger chunks better amortize the synchroniza-
tion overhead (i.e., waiting for tokens) required for the sequential
stages. The number of times that a thread needs to wait for the
token is inversely proportional to the chunk size. Thus, when a
sequential stage is critical (e.g., SS1 in Figure 1(b)), chunking min-
imizes the overhead of executing that stage in different cores.

Smaller chunks create more coherence traffic when there exist
data sharing between consecutive iterations. Most cross-iteration
communication will stay on a core – only when that communication
crosses chunk boundaries will it move between cores. Therefore,
larger chunks reduce communication. In Figure 2, for example,
we see both true and false sharing. Both iteration 5 and 6 use a5,
b5, and c5. On the other hand, there exists false sharing between
iteration 4 and 6 when any of a4, a6 or b4, b6 or c4, c6 occupy the
same cache line.

However, chunks cannot be arbitrarily large for two reasons.
First, smaller chunks exploit locality better. Chunks that do not fit
in the private caches will evict the shared data between two stages
and will cause unnecessary long latency misses. Second, chunk
size determines the amount of parallelism that can be extracted. In
Figure 2, for three threads, chunks of 2 iterations gives parallelism
of 2.25× whereas 4 iterations per chunk gives parallelism of 1.8×
(there are 12 iterations in total). But, this gap diminishes when the
loop iterates more. From the parallelism point of view, the size of
the chunk relative to the number of loop iterations is important.

LBPP provides three key advantages over TPP – locality, thread
number independence, and load balancing.

3.2.1 Locality
LBPP provides better locality compared to traditional pipelin-

ing. In TPP, data shared between stages within an iteration always
crosses cores. Since pipelined loops always share data between
stages, this is the dominant communication. In LBPP, this com-
munication never crosses cores. TPP may avoid cross-core com-
munication for loop-carried dependencies, but only if they go to
the same stage. With LBPP, loop-carried dependencies only cross
cores when they cross chunk boundaries, whether or not they are
within a stage.

In Figure 1(a), the first two stages (SS1 and SS2) share a while
the last two stages share b. Similarly, in Figure 1(b), the parallel
stage PS1 uses p produced by SS1. Note that most of this sharing
is read-write sharing, and all require expensive cache-cache trans-
fers with TPP. The communication cost was also identified as a key
bottleneck for traditional pipelining on real systems [19, 21].

In contrast, LBPP executes all stages of the same chunk in the
same core. All the intra-iteration communication between stages
happens within the same core. In Figure 3, PS1 will find p al-
ready available in the cache. The same thing happens for the reg-
ular loop in Figure 2. SS2 finds a while SS3 finds b in the private
cache. LBPP can also exploit data sharing between distant stages,
e.g. sharing between stage 1 and stage 4, etc.

For the example regular loop, assuming 3000 iterations, chunk
size of 500, 8-byte values, and no false sharing, traditional pipelin-
ing would move 48,000 bytes for intra-iteration dependences while
all loop carried communication is free. For LBPP, all intra-iteration
communication is free, and we would move 144 bytes for loop-
carried communication between chunks.

Chunking allows LBPP to target a certain level (either private or
shared) of the cache hierarchy. By tuning the chunk size, LBPP can
confine most memory operations to either the L1 cache or the L2
cache. In some sense, LBPP implements tiling between stages with
the help of chunking.

3.2.2 Thread number independence
In Figure 2, there are three sequential stages. For TPP, the

code created by the compiler would be very different depending on

for(i=1;i<N;i++) {
t1 = i*2;
a[i] = a[i-1] + t1;
b[i] = a[i] + c[i-1];
c[i] = b[i] + c[i-1];
t2 = c[i] + sin(i);
d[i] = d[i-1] + t2;

}

P
Q
R
S
T
U

P

Q
R

S

T U

P

Q

RS

T

U

chunk of PQ

chunk of RS

chunk of T

chunk of U

Sequential

Sequential

Sequential

Parallel

(a) Loop code (b) Dependence graph (c) DAG of SCCs (d) Loop pipeline

for(i=1;i<N;i++) {
t1 = i*2;
a[i] = a[i-1] + t1;
b[i] = a[i] + c[i-1];
c[i] = b[i] + c[i-1];
t2 = c[i] + sin(i);
d[i] = d[i-1] + t2;

}

P
Q
R
S
T
U

for(i=1;i<N;i++) {
t1 = i*2;
a[i] = a[i-1] + t1;
b[i] = a[i] + c[i-1];
c[i] = b[i] + c[i-1];
t2 = c[i] + sin(i);
d[i] = d[i-1] + t2;

}

P
Q
R
S
T
U

P

Q
R

S

T U

P

Q
R

S

T U

P

Q

RS

T

U

P

Q

RS

T

U

chunk of PQ

chunk of RS

chunk of T

chunk of U

Sequential

Sequential

Sequential

Parallel

(a) Loop code (b) Dependence graph (c) DAG of SCCs (d) Loop pipeline

Figure 4: Different steps of constructing the pipeline for a loop.

whether it expected two cores or three cores to be available for ex-
ecution. In LBPP, the code is the same in either case. Thus, LBPP
decouples the code generation from the expected thread count, sim-
plifying compilation and providing better adaptation to runtime
conditions. We can use any number of threads irrespective of the
number of pipeline stages for a loop, even including more threads
than stages. For one thread, the loop executes the three stages se-
quentially. For two threads, LBPP achieves pipelining and extracts
as much as 2× parallelism when all three stages are of equal weight
(TPP will suffer from imbalance). The parallelism improves to 3×
for three threads. With more threads, the parallelism does not im-
prove, but we might get additional speedup because of data spread-
ing [10]. Data spreading implies distributing the data of a sequen-
tial loop over several private caches, creating the effect of a single
large, fast private cache. LBPP can emulate this mechanism just
by growing the number of threads/cores until the working set fits in
the caches, again without recompiling.

3.2.3 Load balancing
LBPP is inherently load balanced like the traditional loop-level

data parallelism, because each thread does the same work, only on
different iterations of the loop. Thus, performance tends to scale
linearly until we reach the maximum performance. That is not typ-
ically the case with traditional pipelining, although it will approach
the same peak performance eventually.

Assume, a pipeline has k sequential stages with execution times
S1, S2 . . . Sk and SSl is the largest stage with execution time,
Smx. We also assume that there are a large number of iterations
and there is no synchronization overhead. Thus, if thread 1 releases
a token at time t, thread 2 can grab that token and start executing at
time t. Moreover, since there are enough iterations, we ignore the
first and last few iterations where not all threads are active.

With these settings, there is an important observation. A thread
will only wait for tokens when it needs to execute the bottleneck
stage SSl. That is because when it gets the token for SSl, it would
require the next token after Smx time and by that time, the next
required token will be available. So, the average execution time
of an iteration will be T +W where T is

∑k
i=1 Si, and W is the

waiting time for the token to execute SSl.
We can computeW for n threads. A thread that just finishes SSl

will require the token to execute this stage again after T − Smx

time. On the other hand, the token will be available after (n− 1) ∗
Smx time. So, W is max(0, (n − 1) ∗ Smx − (T − Smx)) or
max(0, n ∗ Smx − T). Thus, the average execution time of an
iteration is max(T/n, Smx) using n threads. The equation also
holds when there are one or more parallel stages. In that case, T is

∑k
i=1 Si +

∑m
i=1 Pi where P1, P2 . . . Pm are the execution times

for the parallel stages. The expected parallelism of such a pipeline
using LBPP for n threads is given in the following equation:

LBPPn =
T

max(T/n, Smx)
(1)

Equation 1 shows that LBPP is load balanced and always
achieves maximum possible parallelism for any thread count. The
parallelism increases linearly until it reaches the theoretical max,
i.e., T/Smx (Amdahl’s law). The minimum number of threads to
gain the maximum parallelism is:

LBPPmin = ceil(T/Smx) (2)

Compared to that, TPP uses a single thread for each sequential
stage, and one or more for each parallel stage. So, the minimum
number of threads to achieve the maximum parallelism is:

TPPmin = k +

m∑
i=1

ceil(Pi/Smx) (3)

From Equation 2 and 3, LBPPmin is always smaller than
TPPmin unless all the stages have equal execution times. In that
case, both values are the same. For example, assume a pipeline has
5 sequential stages with the execution times of 10, 15, 10, 20, and
5. TPP will require 5 threads to reach the maximum parallelism of
3×. However, LBPP will require only 3 threads to achieve that.

The load balancing becomes more evident in the presence of
parallel stages. Assume a pipeline has 2 sequential and 2 parallel
stages with the execution times of 10, 10, 40, and 40, respectively.
With 4 cores, TPP extracts 100/40 = 2.5× parallelism. However,
LBPP gives 4× parallelism and utilizes all threads 100%. LBPP
provides more parallelism until we use 10 threads. In that case,
both provide the maximum parallelism of 10×.

Looking closely, LBPP provides better parallelism because of
better load balancing. In LBPP, the same parallel stage may ex-
ecute across all cores. Similarly, several small sequential stages
may execute on a single core. These things are not possible in TPP,
because stages are tightly bound to threads.

Equation 1 also suggests that for LBPP, the parallelism is in-
dependent of the number of stages. This gives enormous flexibility
while designing the pipeline. Load balancing allows us to add more
pipeline stages or redesign the current stages and still ensures the
maximum parallelism as long as T and Smx do not change.

If we account for synchronization cost, there is one case where
TPP may have an advantage. Once we have enough threads that a
sequential stage becomes the bottleneck, TPP executes that stage

on a single core, while LBPP executes it across multiple cores.
Both techniques will have some synchronization in the loop, but
TPP may be able to avoid it when that stage only produces and no
queuing is necessary (e.g., SS1 in our regular loop). However, for
LBPP, it can be highly amortized with large chunks. In our exper-
iments, this effect was, at worst, minimal, and at best, completely
dominated by the locality advantages of LBPP.

4. LBPP IMPLEMENTATION
LBPP can be automatically implemented in the compiler and

does not require any hardware support. Our implementation
of LBPP follows very closely the implementation of traditional
pipelining, at least in the initial steps. In fact, any traditionally
pipelined loop can be automatically converted to take advantage of
LBPP.

There are four steps to apply LBPP – DAG construction, pipeline
design, adding synchronization, and chunking.

4.1 DAG construction
In this step, we construct the dependence graph for a loop using

the same methodology described in previous work [18, 19]. The
dependence graph includes both data and control dependence. Fig-
ure 4(b) shows the dependence graph for the loop on the left side.
An arc from node x to node y denotes that node y must execute
after the execution of x.

Next, we identify the strongly connected components (SCC) in
the dependence graph. Nodes in an SCC have cyclic dependencies,
and cannot be pipelined. Executing all the nodes of an SCC in the
same thread maintains the chain of dependency. The rectangular
boxes in Figure 4(b) represent the SCCs. If we consider each SCC
as a single node, we get a directed acyclic graph (DAG). This is
called the DAG of SCCs. We can do a topological ordering for
the DAG so that all edges are either self edges or go forward to
subsequent nodes, i.e., there will be no backward edges. Figure 4(c)
shows the DAG for this example loop.

In a DAG, the self arc represents cross-iteration dependency
whereas forward arcs represent intra-iteration dependency. We can
pipeline all the nodes of a DAG by making each node a different
pipeline stage. This will satisfy all the dependencies. The nodes
that do not have self arcs (P, T in Figure 4(c)) can be executed in
parallel as well. These become the parallel stages in a pipeline. The
others (Q, RS, U) become sequential stages.

4.2 Pipeline design
LBPP is load balanced and independent of how many threads

will be used at runtime. This makes pipeline design easy and flexi-
ble.

From Section 3.2.3, we need to minimize both T (the sum of
all stage execution times) and Smx (the maximum of all stage ex-
ecution times) for maximum parallelism. The DAG construction
automatically minimizes Smx. However, using all DAG nodes as
separate stages may not minimize T . There are overheads for each
additional stage. These include the synchronization overhead for
sequential stages, decoupling overhead (loading and storing data
from local buffers), reduced instruction level parallelism, and other
software overheads. Chunking automatically amortizes most of
these overheads. To reduce them further, we can cluster stages as
long as Smx does not increase.

For clustering, we first collapse simple producer stages with cor-
responding consumer stages. In Figure 4(c), stage P computes i ∗ 2

while(node != root) {
while(node) {

if(node->orientation == UP)
node->potential=node->basic_arc->cost+node->pred->potential;

else {
node->potential=node->pred->potential–node->basic_arc->cost;
checksum++; }

tmp = node; node = node->child; }
…………….

}

Figure 5: Nested loop of refresh_potential function of mcf.

used by stage Q. Keeping P as a separate stage will cause a store
operation (enqueue i ∗ 2) in P, and a load operation (deque i ∗ 2)
in Q. Collapsing P with Q will remove these memory operations
and the overheads for using one extra stage. This also compacts Q
because the load operation is more expensive than computing i ∗ 2
in most systems. As a rule of thumb, we collapse a stage unless it
does enough computation that it is equivalent to doing at least three
memory operations.

Next, we try to coalesce parallel stages similar to that described
in the earlier work [19]. We combine two parallel stages PS1 and
PS2 when there is no intervening sequential stage, SS such that
there is an arc from PS1 to SS and SS to PS2 in the DAG of SCCs.
We continue this process iteratively unless no more coalescing is
possible. This process of coalescing does not change Smx. So,
from Equation 1, there is no negative impact on the level of paral-
lelism.

LBPP works well if we design the pipeline using above steps. We
can further optimize the pipeline by collapsing the stages whose
combined execution time does not exceed Smx. This requires to
estimate the stage execution times, which can be done by using a
cost model, or by profiling. In this work, we use a simple cost
model that counts different operations and takes an weighted sum
for the estimation. The model assumes a large weight for function
calls or when the stage itself is a loop. Note that for LBPP, we
do not need a perfect partitioning of stages, but we should remove
simple stages (easy to identify) that benefit less than the overheads
induced. So, a precise execution time for complex stages (having
function calls or loops) is not necessary. Next, we use a simple
greedy algorithm for the merging of stages, because LBPP does not
require the optimal solution like TPP. For example, if the execution
times are 60, 40, 20, 30, 20, and 10 – both 60, 60, 60 and 60, 40,
50, 30 are equally good solutions.

The output of the pipeline design step is a sequence of sequential
and parallel stages. Figure 4(d) shows the pipeline for our example
loop. We add necessary memory operations to transfer data from
one stage to another stage. In our example, we buffer t2 in stage T
and use that in stage U.

4.3 Chunking
Our compilation framework adds necessary code for chunking

the pipeline stages. For a particular chunk size, we compute the
number of iterations per chunk (say k) using the memory footprint
of a loop iteration. LBPP executes k iterations of a stage before
going to the next stage.

Figures 2 and 3 show the chunking of both regular and irregular
loops. For regular loops (loop count is known), each thread inde-
pendently identifies the chunks for themselves and execute those
chunks. The threads exit when there are no more chunks to ex-
ecute. For irregular loops, LBPP uses a sequential stage (SS1 in
Figure 2) that catches the loop termination in one thread and for-

CPU components Intel Nehalem, AMD Phenom
CPU Model Core i7 920, Phenom II X6 1035T
Number of cores 4, 6
L1 cache 32-Kbyte 4 cycles, 64-Kbyte 3 cycles
L2 cache 256-Kbyte 10 cycles,

512-Kbyte 15 cycles
L3 cache 8-Mbyte shared inclusive 46 cycles,

6-Mbyte shared exclusive 45 cycles
DRAM hit latency 190-200 cycles, 190-200 cycles
Cache to cache 42 cycles, 240 cycles
transfer latency

Table 1: Microarchitectural details of the Intel and AMD sys-
tems.

wards that information to other threads. LBPP automatically packs
and unpacks necessary liveins for all the coordinations.

In this work, we statically compute the approximate memory
footprint of a loop iteration. This is easy for loops that do not have
inner loops. For nested loops, the iteration memory footprint of the
outer loop depends on the number of iterations of the inner loop.
Figure 5 shows an example of that. In this case, the number of it-
erations of the inner loop is not fixed, so the memory footprint of
the outer loop iteration changes dynamically. If we apply chunking
to the outer loop and use a fixed value of k, chunks will not be of
even size and load distribution between threads will be imbalanced.
We solve this problem by adding a lightweight sequential stage that
counts the number of inner loop iterations. Thus, we can compute
a more accurate value of k and do better load distribution – we ter-
minate a chunk based on the inner loop count rather than the outer
loop count. Note that in LBPP, adding a lightweight stage is inex-
pensive since it does not require a new thread. The technique also
works for multiple inner loops. In fact, it can also be used for load
balancing of pure data parallel loops.

In Section 6, we will examine other metrics besides memory
footprint for determining chunk size.

4.4 Adding synchronization
In the final step, we add the synchronization operations (wait-

ing for tokens and releasing tokens) to the sequential stages. The
compilation framework creates the necessary tokens at the begin-
ning of the program. At the start of a pipelined loop execution,
the framework assigns all the corresponding tokens to the thread
that executes the first chunk. When a thread completes a sequential
stage, it passes the token to the next thread. There is also a barrier
at the end of each pipelined loop to make all changes visible before
proceeding to the computation following the loop.

5. METHODOLOGY
We choose two state of the art systems from different vendors

to evaluate LBPP. Table 1 summarizes the important microarchi-
tectural information of both systems. The systems run Linux 2.6.
We compile all our codes using GCC version 4.5.2 with “-O3” opti-
mization level. We keep hardware prefetching enabled for all of the
experiments. For power measurements, we use a “Watts up? .Net”
power meter that measures the power at the wall and can report
power consumption in 1-second interval with ±1.5% accuracy.

We apply LBPP on loops from a diverse set of applications cho-
sen from different benchmark suites – Spec2000, Spec2006, Olden,

for(i=1;i<N;i++) {
SS1:
a[i] = sin(a[i-1]+a[i]+1);
SS2:
b[i] = sin(b[i-1]+a[i]+1);
SS3:
c[i] = sin(c[i-1]+b[i]+1);
SS4:
d[i] = sin(d[i-1]+c[i]+1);
SS5:
e[i] = sin(e[i-1]+d[i]+1);

}
(a) mb_load

t = start_node;
while(t != stop_node)
{

SS1:
tmp = t;
t = t->next;
SS2:
s += tmp->left->a;

}
(c) mb_local

for(i=2;i<N;i++) {
SS1:
a[i] = (a[i-2] + a[i-1] +

a[i]) / 3.0;
PS1:
b[i] = sin(a[i]) * cos(i);
SS2:
c[i] = (c[i-1] + a[i] +

b[i]) / 3.0;
PS2:
d[i] = sin(c[i]) + M_PI;

}
(b) mb_ubal

for(i=1;i<N;i++) {
SS1:
a[i] = sin(a[i-1]+a[i]+1);
SS2:
b[i] = sin(b[i-1]+a[i]+1);
SS3:
c[i] = sin(c[i-1]+b[i]+1);
SS4:
d[i] = sin(d[i-1]+c[i]+1);
SS5:
e[i] = sin(e[i-1]+d[i]+1);

}
(a) mb_load

t = start_node;
while(t != stop_node)
{

SS1:
tmp = t;
t = t->next;
SS2:
s += tmp->left->a;

}
(c) mb_local

for(i=2;i<N;i++) {
SS1:
a[i] = (a[i-2] + a[i-1] +

a[i]) / 3.0;
PS1:
b[i] = sin(a[i]) * cos(i);
SS2:
c[i] = (c[i-1] + a[i] +

b[i]) / 3.0;
PS2:
d[i] = sin(c[i]) + M_PI;

}
(b) mb_ubal

Figure 6: Source code of the microbenchmarks that explore
different aspects of LBPP.

SciMark2. We also pick two important irregular applications (also
used in previous work) – ks (Kernighan-Lin graph partitioning al-
gorithm), and otter (an automated theorem prover). We exclude
some benchmarks whose key loops have either one parallel or se-
quential stage (no pipelining possible). In addition, our compilation
framework currently only handles C code, further limiting candi-
date benchmarks.

Table 2 shows the loops of interest, corresponding function
names, and the description of the benchmark. We select a loop
if it is not parallel and contributes at least 10% to the total ex-
ecution time, when executed serially with the reference input.
Table 2 also shows each loop’s contribution to the total execu-
tion time in the AMD system, and the pipeline structure iden-
tified by the compiler. There are four pointer chasing irregu-
lar loops – refresh_potential, FindMaxGpAndSwap, BlueRule, and
find_lightest_geo_child. Most of these loops have inner loops.

6. RESULTS
We evaluate LBPP in several steps. First, we use a set of simple

microbenchmarks to explore the potential and different characteris-
tics of LBPP. Then, we evaluate its impact on the real applications
described in Section 5. Finally, we study LBPP’s impact on the
power and energy consumption.

For all of our experiments, we also implement traditional pipelin-
ing (TPP) as efficiently as possible. This is straightforward because
the compiler-extracted pipeline structure and even the optimization
of the stages (coalescing, etc.) are the same for both techniques. In
fact, both LBPP and traditional pipelining use similar synchroniza-
tion constructs.

6.1 Microbenchmarks
We design several simple microbenchmarks whose pipeline

structures are easy to recognize. They capture a variety of char-
acteristics including the amount of data transfer between stages,
the organization of sequential and parallel stages, and the relative
weight of stages. Figure 6 shows the source code and pipeline
structures of the three microbenchmarks. All of them run many
iterations and have large working sets unless specified otherwise.
The speedup numbers given in this section and afterwards are all
normalized to the single thread execution with no pipelining.

6.1.1 Load balancing and number of stages
Microbenchmark mb_load has five sequential stages and the

pipeline is mostly balanced. Adjacent stages share data, but the
amount of data sharing compared to the computation per stage is
small, because the sin function is expensive.

Function name Benchmark name Suite Contribution Pipeline structure
match, train_match art Spec2000 77% ss1 ps1
f_nonbon ammp Spec2000 12% ss1 ps1 ss2
smvp equake Spec2000 68% ss1 ps1 ss2
SetupFastFullPelSearch h264ref Spec2006 30% ss1 ss2 ps1
P7Viterbi hmmer Spec2006 99% ps1 ss1
LBM_performStreamCollide lbm Spec2006 99% ps1 ss1
refresh_potential mcf Spec2006 19% ss1 ps1 ss2
primal_bea_mpp mcf Spec2006 61% ps1 ss1
FindMaxGpAndSwap ks Graph partitioning 100% ss1 ps1 ss2
BlueRule mst Olden 77% ss1 ps1 ss2
find_lightest_geo_child otter Theorem proving 10% ss1 ps1 ss2
SOR_execute ssor SciMark2 99% ps1 ss1

Table 2: List of benchmarks explored in our experiments. Here, ss represents sequential stage where ps stands for parallel stage.

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6

2 3 4 5 6
No of cores

Sp
ee

du
p

TPP
LBPP

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6

2 3 4 5 6
No of cores

Sp
ee

du
p

TPP
LBPP

(a) (b)

Figure 7: Scalability of mb_load – (a)
Phenom (b) Nehalem

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6

2 3 4 5 6
No of cores

Sp
ee

du
p

TPP
LBPP

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6

2 3 4 5 6
No of cores

Sp
ee

du
p

TPP
LBPP

(b)(a)

Figure 8: Scalability of mb_ubal – (a)
Phenom (b) Nehalem

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
2.2
2.4

2 3 4 5 6
No of cores

Sp
ee

du
p

TPP
LBPP

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
2.2
2.4

2 3 4 5 6
No of cores

Sp
ee

du
p

TPP
LBPP

(b)(a)

Figure 9: Scalability of mb_local – (a)
Phenom (b) Nehalem

We apply LBPP and TPP on mb_load for different number of
threads. For LBPP, we use the same pipeline structure for all thread
combinations. However, the 5-stage pipeline given above is only
applicable for five threads when we use TPP. So, we make the best
possible partition of the stages into 2, 3, and 4 groups to run with
2, 3, and 4 threads, respectively, but a balanced partitioning is not
possible. Figure 7 shows the speedup using both techniques on the
two experimental systems. We use several chunk sizes for both
LBPP and TPP and show the data for the best chunk size. Chunk-
ing lets TPP use synchronization and enqueuing once for a group
of iterations, like LBPP. Section 6.2 gives more information about
choosing the chunk size.

LBPP improves performance linearly in both systems. The max-
imum possible parallelism for this loop is 5×. LBPP provides 4.7×
speedup for five cores in the AMD system and 4× for four cores in
the Intel system. From Equation 1, the parallelism will not increase
once it gets limited by the largest sequential stage. So, in the AMD
machine, the speedup stays the same beyond five cores.

Figure 7 also demonstrates the importance of decoupling the
pipeline design and the number of threads to be used. TPP gives the
same speedup as LBPP for five cores. However, it loses as much as
35% (4.1× vs. 2.7×) and 30% (4× vs. 2.8×) for four threads in
the AMD and Intel system, respectively, despite using the optimal
partitioning of the stages. Lack of load balancing accounts for this.
With four partitions of the five similar stages, the largest partition
is twice as big as the smallest one, and makes one core overloaded.
LBPP also outperforms traditional pipelining while using 2 or 3
cores.

6.1.2 Unbalanced stages
LBPP effectively handles the pipeline where there are multiple

parallel stages and the stages are not balanced. The microbench-
mark mb_ubal has two parallel stages and two sequential stages of
relative weight of 60, 30, 5, and 5, respectively. For TPP, we use
the best possible partitioning when there are less than four threads,
and assign the extra threads to the parallel stages when there are
more.

Figure 8 shows the performance for this pipelined loop. LBPP
provides linear performance improvements for all thread combina-
tions in both machines. The sequential stages here are much shorter
than the parallel stages. LBPP does not bind stages to threads and
dynamically assigns stages to threads. With LBPP, it is possible
that all threads are executing the largest parallel stage PS1 at a time,
where TPP only gets stage parallelism when it can explicitly assign
multiple threads to a stage. LBPP provides 6× speedup for six
cores in AMD Phenom and 4.2× for four cores in Intel Nehalem.

In this case, TPP suffers from load imbalance, because the
smaller stages occupy cores and sit idle waiting for the data from
the largest stage, PS1. This results in performance loss of 55% in
Nehalem, and 58% in Phenom for four cores (each stage gets its
own core). The situation does not improve much even when we use
extra threads for PS1 and PS2. The performance loss is 44% for
six cores in the AMD machine. In fact, from Equation 3, for any
thread count of less than 20, LBPP will outperform TPP.

6.1.3 Locality
Microbenchmark mb_local explores the locality issue in pipelin-

ing. This irregular loop uses a 1 MB working set and executes mul-

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

2.2
2.4
2.6

mb_load mb_ubal mb_local

Sp
ee
du
p

10 50 100 500 1000 10000

(a)
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

2.2
2.4
2.6

mb_load mb_ubal mb_local

Sp
ee
du
p

0.1us 0.5us 1.0us 5.0us
10us 50us 100us

(b)
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

2.2
2.4
2.6

mb_load mb_ubal mb_local

Sp
ee
du
p

1KB 8KB 32KB 64KB
128KB 256KB 512KB

(c)

Figure 10: Performance impact in LBPP of different chunk sizes in the AMD Phenom system – (a) Iteration based, (b) Execution
time based, (c) Memory footprint based.

tiple times. Thus, the same data is reused again and again. Stage
SS1 does the pointer chasing and supplies pointers to SS2 to do the
accumulation. So, there exists significant data sharing between the
two sequential stages.

Figure 9 compares the performance between LBPP and TPP.
Here, two cores are enough to exploit the available parallelism for
both techniques. Yet LBPP outperforms TPP by 36% and 11%
for Phenom and Nehalem, respectively, because it exploits local-
ity. The pointers traversed by SS1 stay in the local cache for LBPP.
However, for TPP, it requires expensive cache to cache transfers
(Table 1) to send the pointers from SS1 to SS2. In Nehalem, this
causes 16% more references to the last level cache. The loss is more
prominent in Phenom than it is in Nehalem. This directly correlates
with the latency of cache to cache transfers, which is much higher
in Phenom (Table 1), making locality more critical.

Figure 9 also shows LBPP’s ability to exploit data spread-
ing [10]. Nehalem does not experience this, because the working
set does not fit in the combined L2 cache space. For Phenom (with
more cores and larger L2 caches), the working set gets distributed
and fits in the aggregate L2 cache space as we add more cores. This
does not increase parallelism, but reduces average memory access
time. The effect improves LBPP’s performance up to 2.3× while
using six cores, even though there are only two sequential stages.

6.2 Impact of chunk size
Chunking is a critical component for LBPP, because it amortizes

the overhead due to data sharing and synchronization. So far, we
have used chunking based on the approximate memory footprint of
an iteration. We can also do chunking using the number of itera-
tions directly, or using the execution time of an iteration (using ex-
pected iteration latency to compute a chunk iteration count). Thus,
chunk size can be a simple iteration count or execution time (in µs)
other than the memory footprint.

Figure 10 shows the performance for our microbenchmarks us-
ing the three chunking techniques. We give the results for Phenom
and use two cores. We vary the chunk size from 1 to 10000 itera-
tions, 0.1µs to 100µs, and 1KB to 512KB for the iteration based,
execution based, and footprint based chunking, respectively.

Iteration based chunking is the simplest. Figure 10(a) explains
the need for chunking. Without chunking (chunk size of one it-
eration in the graph), the performance seriously suffers. The loss
can be as high as 93% compared to the single threaded execution
that uses no pipelining. Using 10 iterations per chunk is also not
sufficient. The tightest loop, mb_local cannot amortize the syn-
chronization overhead and shows negative performance. We see

significant performance improvements for 50 iterations and it im-
proves further for 500 iterations across all microbenchmarks. Thus,
LBPP requires significant computation per chunk to keep the syn-
chronization overhead under control.

Figure 10(b) explains the correlation between the chunk execu-
tion time and the synchronization overhead. LBPP cannot amor-
tize the overhead when the chunks execute for 0.5µs or less. LBPP
amortizes the overhead well and reaches close to 2× speedup when
the chunk size is at least 10µs. This gives an effective bound for
choosing the chunk size. Out of three, mb_load shows more sensi-
tivity to chunk size, because it has five sequential stages and it does
more synchronization per iteration than the others do.

Memory footprint based chunking handles the locality issue. We
can tune the chunk size to target a particular level of the cache hier-
archy. Memory footprint also strongly correlates with the execution
time. Figure 10(c) shows that chunk sizes starting from 8KB work
well across our microbenchmarks. It also shows that by keeping
the chunk size limited to 32KB or 64KB, we can confine the data
transfers from SS1 to SS2 for mb_local in the L1 cache and get
maximum benefit.

Chunking also helps traditional pipelining. In this case, the pri-
mary advantage is to reduce the instances of synchronization. So,
we implement chunking for TPP as well for fair comparison.

Chunk size selection.
The above experiments show the flexibility of using chunk size

for LBPP. Memory footprint based chunking is particularly effec-
tive for compilers, because it is possible to approximate the itera-
tion footprint statically in most cases, and a wide range of chunk
sizes between 8KB and 256KB work well. Compilers can use any
default chunk size (e.g., 32KB, or the size of the L1 cache). Chunk
size is also a runtime parameter, and can be tuned further for a par-
ticular application by profiling.

6.3 Application Performance
This section describes the performance of LBPP on real applica-

tions. Table 2 gives detailed information about the loops and their
corresponding pipeline structure. All the loops have at least one
parallel stage and one sequential stage. Thus, the mix of parallel
and sequential stages is very common.

Figure 11 shows the loop level speedup of LBPP for different
number of cores in the AMD Phenom machine. We normalize the
performance using both single thread execution (left graph), and
using TPP with the same number of cores (right graph). For TPP,
when there are more cores than the number of stages, we apply the

0

1

2

3

4

5

6

art

am
mp

eq
ua

ke

h2
64

re
f

hm
mer lbm

mcf_
re

f

mcf_
pr

i ks mst
ott

er
ss

or

av
era

ge

Sp
ee
du
p

2 cores 3 cores 4 cores

5 cores 6 cores

0

1

2

3

4

5

6

art

am
mp

eq
ua

ke

h2
64

re
f

hm
mer lbm

mcf_
re

f

mcf_
pr

i ks mst
ott

er
ss

or

av
era

ge

S
pe
ed
up

2 cores 3 cores 4 cores

5 cores 6 cores

(b)(a)

Figure 11: Performance of LBPP on sequential loops from real applications using different core counts in AMD Phenom – (a)
normalized to single thread, (b) normalized to TPP.

0

1

2

3

4

5

6

art

am
mp

eq
ua

ke

h2
64

re
f

hm
mer lbm mcf ks mst

ott
er

ss
or

av
era

ge

S
pe
ed
up

2 cores 3 cores 4 cores

5 cores 6 cores

0

1

2

3

4

5

6

art

am
mp

eq
ua

ke

h2
64

ref

hm
mer lbm mcf ks mst

ott
er

ss
or

av
era

ge

Sp
ee
du
p

2 cores 3 cores 4 cores

5 cores 6 cores

(b)(a)

Figure 13: Application level speedup in AMD Phenom – (a) normalized to single thread, (b) normalized to TPP.

0

0.5

1

1.5

2

2.5

3

3.5

4

art

am
mp

eq
ua

ke

h2
64

ref

hm
mer lbm

mcf_
ref

mcf_
pri ks mst

ott
er

ss
or

av
era

ge

S
pe
ed
up

2 cores 3 cores
4 cores

Figure 12: LBPP performance on the Intel Nehalem for real
application loops – normalized to single thread.

extra cores to the parallel stage. We try with the seven footprint
based chunk sizes given in Figure 10(c) and show the result for the
best chunk size for both LBPP and TPP.

LBPP provides significant performance improvements across all
loops, an average speedup of 1.67× for just two cores. The pointer
chasing loop in the complex integer benchmark, mcf shows 1.57×
speedup justifying the importance of loop level pipelining. Some
of the loops (e.g., ks, mst, etc.) show linear scalability. The speedup
can be as high as 5.5× in some cases. On average, the performance
improves from 1.67× to 3.2× when we apply six cores instead
of two cores. Some of the loops do not scale well, because the
parallel stage is not large enough and the sequential stages start to
dominate according to Equation 1. The loops from equake and lbm

have larger parallel stages, but lose some scalability due to the data
sharing and off chip bandwidth limitation, respectively. The equake
loop has significant write sharing across different iterations, enough
that the communication across chunk boundaries makes an impact.
The lbm loop is bandwidth limited and cannot exploit additional
computing resources.

LBPP outperforms traditional pipelining in almost all cases. The
difference is much bigger for smaller core counts, because of the
load balancing and locality issues. LBPP outperforms TPP by 65%
for two cores, and by 88% for three cores on average. Traditional
pipelining closes the gap for higher core counts (5 to 6 cores). For
six cores, LBPP wins by 27%. In that case, there are enough cores
for all stages and load balancing does not remain a critical issue.
This reduces the locality issue to some extent, especially when the
parallel stage gets data from another stage. TPP still moves large
amounts of data, but with more cores, it is better able to hide the
communication. We see this effect in the refresh_potential loop of
mcf, for example.

As a further exploration of scalability, we pick three loops (ks,
mst, and ssor) where LBPP outperforms TPP by big margin and
then compare the performance in a dual socket 12-core system to
check whether TPP can match LBPP for even larger core counts.
Using 12 cores, LBPP outperforms TPP by 5%, 15%, and 7% for
ks, mst, and ssor, respectively. So, LBPP always remains a better
choice even if we add lot more cores to solve the load balancing
issue.

We also evaluate LBPP and TPP in our Nehalem system (Fig-
ure 12). LBPP provides 1.6× and 2.3× speedup on average us-

0

0.2

0.4

0.6

0.8

1

1.2

art

eq
ua

ke

hm
mer lbm mcf ks mst

ss
or

av
era

ge

No
rm

al
iz

ed
 e

ne
rg

y

2 cores 3 cores 4 cores
5 cores 6 cores

(b)

0

0.2

0.4

0.6

0.8

1

1.2

art

eq
ua

ke

hm
mer lbm mcf ks mst

ss
or

av
era

ge

N
or

m
al

iz
ed

 e
ne

rg
y

2 cores 3 cores 4 cores
5 cores 6 cores

(a)

Figure 14: Energy consumption in Phenom – (a) normalized to single thread, (b) normalized to TPP. Here, lower is better.

ing two and four cores, respectively. This is 50% and 26% higher
than what traditional pipelining offers. Thus, LBPP performs well
across different architectures.

The results so far show the performance of the individual loops.
Figure 13 describes the impact on the application level for the AMD
machine, since those loops only represent a fraction of total execu-
tion time. The application performance varies depending on the
loop’s contribution to the total execution time, but also on how the
loop interacts with the rest of the program. For example, the se-
rial part might suffer more coherence activity because of the data
spreading by the pipelined loop. LBPP provides 5.3× and 2.6×
speedup for two irregular applications ks and mst, respectively. For
mcf, it is 2.3×. However, otter sees only 7% improvements even
though the loop level speedup is 4.5×. Overall, even at the appli-
cation level LBPP speedups are high, including outperforming TPP
by 42% and 51% for two and three cores, respectively.

For some of these applications like ammp, most of the part is
parallel. We do not apply LBPP (or TPP) on parallel loops, and
execute them sequentially. So, the loop level performance im-
provement by LBPP does not quite reflect in the application level
speedup (9% speedup for six cores). Assuming, linear scalabilty
of the parallel part of ammp, LBPP provides 5.5× speedup for six
cores.

6.4 Energy Considerations
We measure the total system power using a power meter to un-

derstand the power and energy tradeoff for LBPP. The meter reports
the power consumption in 1-second intervals, prohibiting power
measurement at the loop level, because most of the loops execute
for much shorter than 1 second at a time. Thus, we pick the bench-
marks where the selected loops contribute at least 60% to the total
run time and dominate the power consumption.

Figure 14 shows the normalized energy consumption in the
AMD systems for different numbers of cores. LBPP provides sig-
nificant energy savings over single thread execution across all core
counts, due to decreasing execution times. LBPP beats TPP for all
core counts because of better load balancing and faster execution.
The energy savings is 36% on average for two and three cores. The
improvement in locality makes a significant difference. This can
be seen at large core counts where the difference in energy is far
higher than the difference in performance. In some cases, we even
observe LBPP consuming less power than that of TPP even though
it executes faster. For mst and equake, the power savings is around
8% and 7%, respectively, while using three cores.

7. CONCLUSION
This paper describes Load-Balanced Pipeline Parallelism. LBPP

is a compiler technique that takes advantage of the pipelined nature
of sequential computation, allowing the computation to proceed in
parallel. Unlike prior techniques, LBPP preserves locality, is natu-
rally load-balanced, and allows compilation without a priori knowl-
edge of the number of threads. LBPP provides linear speedup on a
number of important loops when prior techniques fail to do so.

LBPP works by chunking, or executing a number of iterations of
a single stage, before moving on to the next stage. For a sequential
stage, a synchronization token is sent to another thread to continue
with the next chunk. In this way, intra-iteration communication
is always local, and even cross-iteration communication is mini-
mized. Also, because all threads execute all stages, it is naturally
load-balanced.

LBPP outperforms prior pipeline parallel solutions by up to 50%
or more on full applications, especially for lower thread counts. It
provides even more striking energy gains, by reducing both run-
times and decreasing expensive cache-to-cache transfers.

Acknowledgments
The authors would like to thank the anonymous reviewers for many
useful suggestions. This work was supported by NSF grants CCF-
1018356 and CCF-0643880 and by SRC Grant 2086.001.

8. REFERENCES
[1] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. wen

Tseng. An overview of the suif compiler for scalable parallel
machines. In Proceedings of the Seventh SIAM Conference
on Parallel Processing for Scientific Computing, 1993.

[2] C. Bienia and K. Li. Characteristics of workloads using the
pipeline programming model. In Proceedings of the ISCA,
2012.

[3] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. J. ACM, 46(5),
Sept. 1999.

[4] D.-K. Chen and P.-C. Yew. Statement re-ordering for
doacross loops. In Proceedings of the ICPP - Volume 02,
1994.

[5] W. R. Chen, W. Yang, and W. C. Hsu. A lock-free
cache-friendly software queue buffer for decoupled software
pipelining. In ICS, 2010.

[6] R. Cytron. Doacross: Beyond vectorization for
multiprocessors. In ICPP’86, 1986.

[7] J. Giacomoni, T. Moseley, and M. Vachharajani. Fastforward
for efficient pipeline parallelism: a cache-optimized
concurrent lock-free queue. In Proceedings of the PPoPP,
2008.

[8] S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and
C.-W. Tseng. An overview of the fortran d programming
system. In Proceedings of the Fourth Workshop on
Languages and Compilers for Parallel Computing.
Springer-Verlag, 1991.

[9] J. Huang, A. Raman, T. B. Jablin, Y. Zhang, T.-H. Hung, and
D. I. August. Decoupled software pipelining creates
parallelization opportunities. In Proceedings of the CGO,
2010.

[10] M. Kamruzzaman, S. Swanson, and D. M. Tullsen. Software
data spreading: leveraging distributed caches to improve
single thread performance. In Proceedings of the PLDI,
2010.

[11] M. Kamruzzaman, S. Swanson, and D. M. Tullsen. Inter-core
prefetching for multicore processors using migrating helper
threads. In Proceedings of the ASPLOS, 2011.

[12] K. Kennedy and K. S. McKinley. Loop distribution with
arbitrary control flow. In Proceedings of the Supercomputing,
1990.

[13] S. Lee, D. Tiwari, Y. Solihin, and J. Tuck. Haqu:
Hardware-accelerated queueing for fine-grained threading on
a chip multiprocessor. In Proceedings of the HPCA, 2011.

[14] S. Liao, P. Wang, H. Wang, G. Hoflehner, D. Lavery, and
J. Shen. Post-pass binary adaptation for software-based
speculative precomputation. In Proceedings of the PLDI,
2002.

[15] C.-K. Luk. Tolerating memory latency through
software-controlled pre-execution in simultaneous
multithreading processors. In Proceedings of the ISCA, 2001.

[16] P. Marcuello, A. González, and J. Tubella. Speculative
multithreaded processors. In International Conference on
Supercomputing, 1998.

[17] A. Navarro, R. Asenjo, S. Tabik, and C. Cascaval. Analytical
modeling of pipeline parallelism. In Proceedings of the
PACT, 2009.

[18] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic
thread extraction with decoupled software pipelining. In
Proceedings of the International Symposium on
Microarchitecture, 2005.

[19] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I.
August. Parallel-stage decoupled software pipelining. In
CGO, 2008.

[20] E. Raman, N. Va hharajani, R. Rangan, and D. I. August.
Spice: speculative parallel iteration chunk execution. In
CGO, 2008.

[21] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I.
August. Decoupled software pipelining with the
synchronization array. In Proceedings of the PACT, 2004.

[22] D. Sanchez, D. Lo, R. M. Yoo, J. Sugerman, and
C. Kozyrakis. Dynamic fine-grain scheduling of pipeline
parallelism. In PACT, 2011.

[23] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
processors. In Proceedings of the ISCA, 1995.

[24] M. A. Suleman, M. K. Qureshi, Khubaib, and Y. N. Patt.
Feedback-directed pipeline parallelism. In Proceedings of
the PACT, 2010.

[25] M. A. Suleman, M. K. Qureshi, and Y. N. Patt.
Feedback-driven threading: power-efficient and
high-performance execution of multi-threaded workloads on
cmps. In Proceedings of the ASPLOS, 2008.

[26] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges,
G. Ottoni, and D. I. August. Speculative decoupled software
pipelining. In Proceedings of the PACT, 2007.

