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ABSTRACT
With the advent of programmer-friendly GPU computing environ-
ments, there has been much interest in offloading workloads that
can exploit the high degree of parallelism available on modern GPUs.
Exploiting this parallelism and optimizing for the GPU memory hi-
erarchy is well-understood for regular applications that operate on
dense data structures such as arrays and matrices. However, there
has been significantly less work in the area of irregular algorithms
and even less so when pointer-based dynamic data structures are
involved. Recently, irregular algorithms such as Barnes-Hut and
kd-tree traversals have been implemented on GPUs, yielding sig-
nificant performance gains over CPU implementations. However,
the implementations often rely on exploiting application-specific
semantics to get acceptable performance. We argue that there are
general-purpose techniques for implementing irregular algorithms
on GPUs that exploit similarities in algorithmic structure rather
than application-specific knowledge. We demonstrate these tech-
niques on several tree traversal algorithms, achieving speedups of
up to 38× over 32-thread CPU versions.

Categories and Subject Descriptors
D.3.4 [Processors]: Compilers, Optimization

General Terms
Languages, Algorithms, Performance

Keywords
vectorization, tree traversals, GPU, irregular programs

1 Introduction
With the increasing capabilities of graphics processing units (GPUs),
and their noticeable performance per watt advantages over CPUs,
there has been significant interest in mapping various types of com-
putational problems to GPUs. The main success stories of GPU
parallelization are regular applications, such as dense linear alge-
bra programs, which are characterized by predictable, structured
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accesses to memory, and large amounts of data parallelism. These
properties lend themselves to the GPU’s single-instruction, multiple-
thread (SIMT) execution model. In recent years, there have been
many techniques to automatically map such regular programs to
GPUs, often with great success (e.g., [13, 14]).

In contrast, there has been less attention paid to irregular pro-
grams, which perform unpredictable, data-driven accesses. The
complexity and variety of irregular programs, especially the lack
of regularity in their memory access patterns, has meant that most
attempts at mapping irregular programs to GPUs have been ad hoc,
hand-tuned efforts [2, 6, 17, 18, 21]. Many of these approaches
take advantage of specific application semantics to deal with ir-
regular memory accesses and enable effective GPU performance.
What is missing are general-purpose techniques that can be used to
implement a broad class of irregular algorithms on GPUs.

Because irregular algorithms as a whole span a wide range of
applications, we choose to focus on a subset of programs to exploit
common structures and patterns. In recent work, Jo and Kulka-
rni have identified tree traversal algorithms as an interesting class
of irregular algorithms that have some commonality [9–11]. Tree
traversal algorithms arise in varied domains, from data mining (nearest-
neighbor searches) to graphics (accelerated object-ray intersection
tests) to simulation (Barnes-Hut n-body simulations), and exhibit
the same basic pattern: a set of points (e.g., rays) each traverse
a single tree (e.g., a bounding-volume hierarchy that captures the
spatial distribution of objects in a scene) to calculate some object
value (e.g., which object a ray intersects). Section 2.1 discusses
these algorithms in more detail.

Tree traversal algorithms represent an interesting target for GPU
parallelization. As naturally parallel algorithms (the points’ traver-
sals of the tree are independent), they exhibit the massive paral-
lelism that GPUs excel at. However, because the tree structures
are irregular, and the points’ traversals are input-dependent, sim-
ply running multiple traversals simultaneously on the GPU can-
not take advantage of efficient memory accesses, seriously hinder-
ing performance (Section 2.2 discusses GPU architectures and the
GPU performance model in more detail). Due to these character-
istics, there have been several attempts to run tree-traversal algo-
rithms on GPUs, but they have largely relied on algorithmic tweaks
and application-specific optimizations to achieve reasonable per-
formance [2, 5–7, 21]. This paper addresses the open question
of whether there are general, systematic, semantics-agnostic tech-
niques to map traversal codes to GPUs.

General transformations for traversal algorithms

In this paper, we show that tree traversal algorithms have several
common properties that can be exploited to produce efficient GPU
implementations. Crucially, we argue that these properties arise
not from semantic properties of the algorithms, or implementation-



specific details, but instead emerge from common structural fea-
tures of tree traversal algorithms. As a result, we can develop a
catalog of techniques to optimize traversal algorithms for GPUs
and provide a set of easily-checked structural constraints that gov-
ern when and how to apply these techniques. Thus, we address the
problem of finding systematic, general techniques for implement-
ing traversal codes on GPUs.

The primary transformation we develop is autoroping. One of
the primary costs of performing general tree traversals on GPUs is
the cost of repeatedly moving up and down the tree during traversal.
There have been numerous attempts to develop “stackless” traver-
sals that encode the traversal orders directly into the tree via auxil-
iary pointers, called “ropes,” obviating the stack-management that
is otherwise necessary to traverse the tree [6, 21]. Unfortunately,
encoding the ropes into the tree requires developing algorithm- and
implementation-specific preprocessing passes, sacrificing general-
ity for efficiency. Autoroping is a generalization of ropes that can
be applied to any recursive traversal algorithm. In Section 3 we
describe how autoropes work, elaborate on its utility for GPU im-
plementations, and explain how traversal algorithms can be system-
atically transformed to support autoropes.

While autoropes is a wholesale transformation of traversal codes
to better suit the GPU performance model, there are a number of
other structural properties that affect optimization decisions. Sec-
tion 4 describes how we identify and leverage various structural
characteristics to improve memory access behaviors and minimize
load imbalance. As with autoropes, these techniques rely not on
semantic knowledge but only a structural analysis of the algorithm,
and hence are generally applicable. Section 5 discusses how to cor-
rectly engineer and implement traversal algorithms for GPUs; these
techniques apply for all traversal algorithms.

We demonstrate in Section 6 that our transformations are effec-
tive at extracting significant performance from GPU implemen-
tations of a number of tree-traversal benchmarks. In particular,
we show that our GPU implementations perform well compared
to multithreaded CPU implementations, and dramatically outper-
form simple recursive GPU implementations, despite not exploiting
application-specific semantic properties. Section 7 surveys related
work, and Section 8 concludes.

2 Background
In this section we discuss the structure of recursive traversals, which
our transformations address, and present an overview of GPU ar-
chitectures and programming models.

2.1 Traversal algorithms

Recursive traversal problems arise in a number of domains. In as-
trophysical simulation, the Barnes-Hut n-body code builds an oct-
tree over a set of bodies, and each body traverses the tree to com-
pute the forces acting upon it. In graphics, various structures such
as kd-trees and bounding volume hierarchies are used to capture
the locations of objects in a scene, and then rays traverse the tree to
determine which object(s) they intersect. In data mining, kd-trees
are used to capture the relationships of data points, and these trees
are repeatedly traversed to find nearest neighbors or correlation in-
formation. The common theme unifying all of these algorithms is
that a tree is built over some data set, and then that tree is repeat-
edly traversed by a series of points. Notably, in a given algorithm,
each point’s traversal may be different, based on properties of both
the point and the tree.

At a high level, all these recursive tree algorithms can be ab-
stracted using the pseudocode in Figure 1. Each point begins a
recursive depth-first traversal starting at the tree root. As the point

1 TreeNode r o o t = . . .
2 foreach ( P o i n t p : p o i n t s )
3 r e c u r s e ( p , r o o t , . . . ) ;

5 void r e c u r s e ( P o i n t p , TreeNode n , . . . ) {
6 i f ( t r u n c a t e ? ( p , n , . . . ) ) re turn ;

8 / / up da t e p o i n t based on c u r r e n t node
9 u p d a t e ( p , n , . . . ) ;

11 / / c o n t i n u e t r a v e r s a l
12 foreach ( TreeNode c h i l d : n . c h i l d r e n ( ) ) {
13 r e c u r s e ( p , c h i l d , . . . ) ;
14 }
15 }

Figure 1. Abstract pseudocode for tree-traversal algorithms

traverses the tree, portions of the tree are skipped by the traversal
due to truncation conditions.

In some algorithms, such as Barnes-Hut, every point visits chil-
dren in the same order; the only distinction between points’ traver-
sals is whether a sub-tree is skipped due to truncation. In such al-
gorithms, there is a single, canonical traversal order of the tree, and
each point’s traversal order is consistent with the canonical order,
with some portions of the sequence removed. In other algorithms,
such as nearest neighbor, the order of the traversal might differ: the
order in which a point visits children of a node is not fixed (the fore-
ach child loop in line 12 may iterate over the children in a different
order). In these algorithms, there is no canonical order, and each
point’s traversal may differ significantly. We discuss some of the
implications of these different types of algorithms when it comes
to GPU implementations in Section 4.

2.2 GPU architecture

Modern graphics processors implement a highly parallel architec-
ture well-suited for performing the same operation across thou-
sands of individual data elements. Until recently these architec-
tures lacked the general-purpose programming capability necessary
to tackle all but a small subset of graphics processing operations.
While there exist many different GPU architectures we focus on
nVidia GPUs and the CUDA programming environment.

Unlike traditional CPU architectures where each thread may ex-
ecute its own set of instructions, GPUs implement the single in-
struction multiple thread (SIMT) model, where a large collection
of threads execute the same instruction simultaneously. Instead
of focusing on optimizing instruction and memory access latency,
GPUs aim to execute hundreds of the same instruction to achieve
high data throughput by exploiting data parallelism. Using this ap-
proach, GPUs implement many simple cores capable of operating
on individual data elements quickly and efficiently and do not con-
tain complex instruction scheduling or prediction hardware.

nVidia GPUs are organized into a collection of cores called stream
multiprocessors or SMs that are capable of executing hundred of
threads in parallel. Each SM contains a set of simple cores called
streaming processors, or SPs, which are responsible for executing
an instruction for a single thread. Threads running in an SM are
scheduled in groups of 32, called a warp, and execute in SIMD
fashion on a set of SPs. Warps are further grouped into large blocks
of threads for scheduling on an SM. To help mitigate latency, warps
are scheduled in a multi-threaded fashion, where warps performing
long running operations such as global memory accesses yield to
allow other warps to proceed with execution.

A shared block of fast memory called shared memory serves
as a software-controlled cache for the threads running in the SM.
While shared memory can provide performance gains, if too much
is used per thread, fewer thread blocks can occupy an SM simul-
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Figure 2. Tree with ropes installed. Solid lines are children point-
ers, dashed lines are rope pointers.

taneously, reducing parallelism. The SMs are connected to a large
high-latency, high-throughput global DRAM memory with a hardware-
managed level 2 cache. Global memory is capable of achieving
very high throughput as long as threads of a warp access elements
from the same 128-byte segment. If memory accesses are coa-
lesced then each request will be merged into a single global mem-
ory transaction; otherwise the hardware will group accesses into as
few transactions as possible to satisfy the request.

3 Autoropes
This section discusses a novel transformation called autoropes that
avoids unnecessary loads of tree data during traversal. A major
source of overhead in GPU implementations of tree traversal codes
is the data movement required as a thread moves up and down the
tree during traversal. In particular, after traversing one path in the
tree, a thread must return to higher levels of the tree to traverse
down other children (viz. line 12 in Figure 1). As a result, interior
nodes of the tree are repeatedly visited during traversals, requiring
in substantial extra work.

We note that the additional visits to interior nodes are not strictly
necessary. If the tree were linearized according to traversal order, a
traversal algorithm could be rewritten to simply iterate over the lin-
ear traversal order. This is complicated by the fact that each point’s
traversal is different, so there is no single linear order of traversal.
However, the overhead of superfluous loads is significant, so sev-
eral application-specific approaches have been proposed to tackle
the problem. In algorithms like Barnes-Hut, where a point’s traver-
sal can be computed without executing the entire algorithm, a pre-
processing pass can determine each point’s linear traversal, avoid-
ing repeatedly visiting interior nodes during vector operations [15].
However, this preprocessing step can be expensive, and it cannot be
done for algorithms such as nearest neighbor, where a point’s full
traversal is only determined as the traversal progresses.

A more general approach to avoiding unnecessary visits is to pre-
process the input data, but rather than preprocessing the traversals,
preprocess the tree itself. Various GPU implementations of tree
traversal algorithms have proposed installing ropes, extra pointers
that connect a node in the tree not to its children, but instead to
the next new node that a point would visit if its children are not
visited [6, 21]. Figure 2 illustrates a simple binary tree with addi-
tional pointers that indicate the next element of a traversal (shown
in dashed lines). Note that every node, including interior nodes,
possesses such pointers.

With ropes “installed” into a tree, a point never needs to return
to interior nodes to perform its traversals. In lieu of returning from
a recursive call during a traversal, the point can follow the rope
pointer to continue its traversal. Note that because ropes are in-
stalled on interior nodes as well, truncation of traversals is grace-
fully handled. For example, in Figure 2, if a point’s traversal is trun-
cated at node 2©, following the rope will correctly lead the point to
the next node to visit, 5©. By using ropes, a recursive traversal of
the tree is effectively turned into an iterative traversal of the ropes.
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Figure 3. Saving ropes on the stack

A major drawback of using ropes is that the tree must be prepro-
cessed to install the ropes. This requires an additional pass prior
to performing the actual traversals. In addition, rope installation
is non-trivial for more complex traversals where there is no sin-
gle traversal order—multiple ropes may need to be installed, to ac-
count for different possible traversal patterns. As a result, all prior
attempts to use ropes to accelerate tree traversals have relied on
application-specific transformations that leverage the semantics of
the algorithm to efficiently place ropes [6, 21].

Autoropes avoids these issues. Our transformation (a) can be
performed without semantics-based knowledge; (b) applies to any
traversal algorithm, even those with complex traversal patterns; and
(c) does not require any preprocessing of the tree. Intuitively, au-
toropes transforms the recursive traversal of the tree into a depth-
first search of the tree through a transformation akin to tail-call
elimination, allowing an efficient implementation that avoids all
superfluous visits to interior nodes. Autoropes ensures that each
node of the tree is visited no more than once during any traversal.
The following sections provide a high level overview of the au-
toropes technique (Section 3.1); identify the circumstances under
which autoropes can be applied and discuss how to transform code
to implement autoropes (Section 3.2); and argue for the correctness
of our transformation (Section 3.3).

3.1 Overview of autoropes

Prior work that used ropes to speed up traversals relied on pre-
processing the tree to install ropes into the nodes of the data struc-
ture. This results in good performance (traversals require following
pointers in the already-loaded tree nodes), but does not work in the
general case: there are too many ropes that could be followed from
a node, and algorithm-specific knowledge is required to reduce the
number of ropes. Because autoropes are intended to work for any
tree traversal, we must sacrifice efficiency for generality.

Rather than storing ropes in the nodes of the data structure di-
rectly, we save ropes to a stack much in the same way the next
instruction addressed is saved to the function call stack. Figure
3 shows how an example recursive traversal is implemented with
ropes stored onto a stack. At each point of the traversal, child nodes
are pushed onto the rope stack in the order that the children will be
traversed. To start the traversal, node 1© is popped from the top of
the rope stack. At node 1©, either node 2© or 5© may be the next
child visited by the traversal. Since the ordering of child nodes
can be determined at runtime, child nodes are pushed onto the rope
stack in the appropriate order at run time—for example, first 5©,
then 2©. The traversal will proceed by popping 2© from the top of
the stack and then again determine the order that the children of 2©
must visit. At node 3© we see the benefit of ropes, as we can jump
directly to node 4© by popping the rope from the top of the stack
without backtracking up to node 2©. The traversal will continue in
this fashion until the rope stack is emptied.

One way to view this approach is that we represent the traversal
as an iterative, pre-ordered, depth-first search. Essentially, rather
than pre-computing rope pointers and storing them in the tree, we
compute them during the traversal and store them on the stack. This
results in slightly more overhead than the hand-coded version (due
to stack manipulation), but allows autoropes to work for any tree



1 void r e c u r s e ( node r o o t , p o i n t p t ) {
2 i f ( ! c a n _ c o r r e l a t e ( r o o t , p t ) )
3 re turn ;
4 i f ( i s _ l e a f ( r o o t ) ) {
5 u p d a t e _ c o r r e l a t i o n ( r o o t , p t ) ;
6 re turn ;
7 } e l s e {
8 r e c u r s e ( r o o t . l e f t , p t ) ;
9 r e c u r s e ( r o o t . r i g h t , p t ) ;

10 }
11 }

Figure 4. Pseudo-tail-recursive function

1 void r e c u r s e ( node r o o t , p o i n t pt , i n t arg , i n t c ) {
2 i f ( ! c a n _ c o r r e l a t e ( r o o t , p t ) )
3 re turn ;
4 i f ( i s _ l e a f ( r o o t ) ) {
5 u p d a t e _ c l o s e s t ( r o o t , p t ) ;
6 re turn ;
7 }
8 i f ( c l o s e r _ t o _ l e f t ( r o o t , p t ) ) {
9 a r g = a r g +c +1;

10 r e c u r s e ( r o o t . l e f t , p t , arg , c ) ;
11 r e c u r s e ( r o o t . r i g h t , p t , arg , c ) ;
12 } e l s e {
13 r e c u r s e ( r o o t . r i g h t , p t , arg , c ) ;
14 r e c u r s e ( r o o t . l e f t , p t , arg , c ) ;
15 }
16 }

Figure 5. Pseudo-tail-recursive function with multiple paths

traversal algorithm. By using an explicit stack of rope pointers to
drive the traversal, we avoid having to visit tree nodes more than
once, without preprocessing or knowing algorithm semantics.

3.2 Applying autoropes
This section describes how the autoropes transformation is applied.
Not every recursive traversal can be transformed directly to use au-
toropes; only functions that are pseudo-tail-recursive can be read-
ily transformed in this manner. A pseudo-tail-recursive function is
a function where all recursive function calls are the immediate pre-
decessors either of an exit node of the function’s control flow graph,
or of another recursive function call. That is, along every path from
a recursive function call to an exit of the control flow graph, there
are only recursive function calls. Pseudo-tail-recursion is a gener-
alization of tail-recursive functions, which have the same property,
but with only a single recursive function call.

While many traversal functions are expressed in pseudo-tail-re-
cursive form, any function with arbitrary recursive calls and con-
trol flow can be systematically transformed to meet the criteria. At
a high level, the transformation proceeds by turning intervening
code between a pair of recursive calls into code that executes at the
beginning of the latter call’s execution. In essence, computation
intended to be performed at a particular node is “pushed” down to
one of its children. By passing arguments identifying the call set
and current child to the recursive method, a check at the beginning
of the method can determine whether any computation needs to be
performed on behalf of a node’s parent. Full details of this trans-
formation can be found in the accompanying tech report [4].

Figures 4 and 5 give examples of pseudo-tail-recursive functions.
Note that the former has just one path through the CFG that can
execute recursive calls (lines 8–9 in Figure 4), while the latter has
two paths through the CFG that execute recursive calls in different
orders (lines 10–11 and lines 13–14 in Figure 5). The first step
in transforming a pseudo-tail-recursive function to use autoropes is
identifying the paths through the code that call recursive functions,
a process we call static call set analysis.

3.2.1 Static call set analysis

A static call-set (we omit the “static” modifier hereafter for brevity)
is the set of recursive calls executed along one path through a func-
tion. Because of control flow, a recursive function may contain only
one call set, or it may contain several. Figure 4 contains just one
call set; there is only one path through the code where recursive
calls are made. In contrast, Figure 5 has two.

Our call set analysis proceeds through a control flow analysis.
Note that identifying call sets is not quite the same as identifying
all paths through a function: not all control flow that produces dis-
tinct paths will produce different call sets. We instead analyze a re-
duced CFG, which contains all recursive calls and any control flow
that determines which recursive calls are made. We assume that
all loops containing recursive calls can be fully unrolled1, meaning
that this reduced CFG is acyclic. Call sets can then be identified by
computing all possible paths through the reduced CFG that contain
at least one recursive call.

In general, a single recursive call may participate in more than
one call set. In pseudo-tail-recursive functions, each recursive call
exists in only one call set. This means that prior to executing any
recursive call, the complete set of calls that will execute can be
determined. This property of pseudo-tail-recursive functions sim-
plifies the autoropes transformation.

Guided vs. unguided traversals Static call set analysis can be
used for more than determining how to apply autoropes. An inter-
esting property that can be identified using call-sets is the whether
a recursive traversal is unguided or guided. An unguided traver-
sal is a recursive traversal where all points will follow a common
traversal order through the tree. Each traversal linearizes the tree in
the same order, with the only differences being which portions of
the tree are skipped due to truncation. For example in the algorithm
shown in Figure 4, points visit the left child of a node before the
right child, implying a global linearization order for the tree.

The alternative to an unguided traversal is a guided one. An ex-
ample of guided traversal is an efficient recursive nearest neighbor
search of a kd-tree, shown in Figure 5. At each node the recursive
traversal must decide which child node to visit, left first then right
or right first then left. Thus, different points may linearize the tree
in different ways. Even two points that visit exactly the same nodes
in the tree may visit them in different orders.

Static call-set analysis allows us to conservatively determine if a
traversal is guided or unguided. An unguided traversal requires that
if a point visits a particular tree node, it will choose the same call
set as all other points that visit that tree node. If there is more than
one static call set in an algorithm, we conservatively assume that
points may take different paths at a particular tree node, depending
on which call set is chosen; having a single call-set is a necessary
condition for our analysis to classify a traversal as unguided2. If
a traversal algorithm has a single call set, then as long as the node
arguments of the recursive calls are not dependent on any properties
of the points, the traversal is unguided. Section 4 explains how
we can leverage the guided versus unguided distinction to further
optimize traversal codes on GPUs.

1As recursive calls in tree traversals are used to visit children,
we are essentially assuming that tree nodes have a maximum out-
degree.
2A more sophisticated analysis might be able to prove that all
points will choose the same call set for a given tree node, for exam-
ple, if the choice of call sets was independent of any point-specific
information.



1 void r e c u r s e ( node r o o t , p o i n t p t ) {
2 s t a c k s t k = new s t a c k ( ) ;
3 s t k . push ( r o o t ) ;
4 whi le ( ! s t k . i s _ e mp t y ( ) ) {
5 r o o t = s t k . pop ( ) ;
6 i f ( ! c a n _ c o r r e l a t e ( r o o t , p t ) )
7 c o n t in u e ;
8 i f ( i s _ l e a f ( r o o t ) ) {
9 u p d a t e _ c o r r e l a t i o n ( r o o t , p t ) ;

10 } e l s e {
11 s t k . push ( r o o t . r i g h t ) ;
12 s t k . push ( r o o t . l e f t )
13 }}}

Figure 6. Autoropes transformation applied to Figure 4

3.2.2 Transforming recursive traversals

As noted earlier, autoropes ensures that each node of the tree is vis-
ited exactly once during any traversal by saving a rope that points to
to-be-visited nodes onto a stack. Autoropes saves these ropes to the
stack dynamically at runtime, obviating the need for additional pre-
processing steps or semantic knowledge about the traversal. Trans-
forming a recursive traversal to perform a rope based traversal is
straightforward for pseudo-tail-recursive functions.

Figures 6 shows the result of applying the autoropes transfor-
mation to the unguided pseudo-tail-recursive traversal functions of
Figure 4. In essence the autoropes transformation simply replaces
the recursive call-sites with stack push operations that save point-
ers to each child traversed. Traversal is facilitated by a loop that
repeatedly pops the address of the next node in the traversal from
the top of the stack until the stack is empty, indicating there are no
more nodes to visit. At the beginning of each iteration of the loop
the next node is popped from the stack. After popping the node
from the stack the body of the function is executed on that node,
possibly pushing more nodes onto the stack or returning due to a
truncation.

An important detail to note is that the recursive calls are replaced
with stack push operations, but the order in which nodes are pushed
is the reverse of the original order of recursive calls, ensuring the
order that nodes are visited remains unchanged. Also, function re-
turns are replaced with a continue statement to prevent the traversal
loop from prematurely exiting and preventing the remainder of the
loop body from executing. We assume that the recursive traversal
function does not return any values. However any function that re-
turns data via the function call stack can be transformed to a func-
tion that returns no values by using a separate stack to maintain
function return values.

We note that autoropes removes calls and returns from the traver-
sal function; the implicit function stack is replaced with an explicit
rope stack. This plays a crucial role in efficiency. Because au-
toropes applies to pseudo-tail-recursive functions, there is no need
to save local variables on the rope stack; control never returns to
a parent node. Similarly, because the original traversal function is
pseudo-tail-recursive, the rope-stack preserves the ordering infor-
mation of recursive calls, and there is no need to save additional
information such as the return address that would have been stored
on a function stack. We note the similarities between this transfor-
mation and the elimination of tail-call recursion, where the function
stack, with storage for local variables, is eliminated.

Figure 7 shows the result of the autoropes transformation on our
guided traversal example. Conveniently, autoropes does not need
to distinguish between guided and unguided traversal, and can use
the same transformation process. Again we note that this traversal
function is pseudo-tail-recursive so we can directly apply autoropes
to the function to produce an iterative traversal. We note in this

1 void r e c u r s e ( node r o o t , p o i n t pt , i n t arg , i n t c ) {
2 s t a c k s t k = new s t a c k ( ) ;
3 s t k . push ( r o o t , a r g ) ;
4 whi le ( ! s t k . i s _ e mp t y ( ) ) {
5 r o o t = s t k . peek ( 0 ) ;
6 a r g = s t k . peek ( 1 ) ;
7 s t k . pop ( ) ;
8 i f ( ! c a n _ c o r r e l a t e ( r o o t , p t ) )
9 c o n t in u e ;

10 i f ( i s _ l e a f ( r o o t ) ) {
11 u p d a t e _ c l o s e s t ( r o o t , p t ) ;
12 c o n t in u e ;
13 }
14 i f ( c l o s e r _ t o _ l e f t ( r o o t , p t ) ) {
15 a r g = a r g +c +1;
16 s t k . push ( r o o t . r i g h t , a r g ) ;
17 s t k . push ( r o o t . l e f t , a r g ) ;
18 } e l s e {
19 s t k . push ( r o o t . l e f t , a r g ) ;
20 s t k . push ( r o o t . r i g h t , a r g ) ;
21 }}}

Figure 7. Autoropes transformation applied to Figure 5

example how autoropes handles function arguments (in this case,
arg and c). If a function argument is not traversal-invariant (some
invocations pass a different value for the argument), the argument
must be stored on the rope stack along with the next node to be
visited (line 16). In contrast, if an argument is traversal invariant
(e.g., c), we can simply maintain its value outside the traversal loop,
and need not store it on the rope stack.

3.3 Correctness

The autoropes transformation preserves all dependences that exist
in the original recursive traversal because the order that the tree is
traversed is unchanged. We refer to the guided traversal in Figure
5 to demonstrate the preservation of this order. If we consider a
particular call-set in the traversal, for example when the left_is_near
condition is satisfied, the recursive traversal will first visit the left
child and its children, then, after unwinding the recursion, the right
child and its children. Similarly for the other call-set, the right child
is visited first and then the left. This ordering must be enforced at
every node to produce an equivalent, rope-based traversal and is
guaranteed by the rope stack that enforces last-in, first-out order of
child ropes pushed at each recursive call site. By pushing the child
nodes in reverse, nodes will be popped from the traversal stack in
the original traversal order expressed by the recursive calls.

4 Lockstep traversals
This section discusses lockstep traversal, an approach to improving
throughput of traversal algorithms on GPUs.

4.1 Memory coalescing and thread divergence

Effective execution on GPUs typically requires carefully managing
two aspects of an application’s behavior, memory coalescing and
thread divergence.

Memory coalescing issues arise as a consequence of the GPU’s
memory architecture. Unlike CPUs, GPUs do not rely on caches
to hide memory access latency. Instead they rely on high through-
put memory to service an entire warp of threads. To achieve this
throughput, the GPU memory controller requires threads within the
same warp to access contiguous regions of memory so that a sin-
gle wide block of memory can be transferred in a single transac-
tion. When threads access non-contiguous elements, accesses must
be serialized into multiple transactions, decreasing throughput. To
help mitigate the performance impact of not adhering to such ac-
cess patterns, modern GPUs will examine the accesses made by
each thread and group them into as few memory transactions as



possible. For example, if all threads in a warp issue a load to the
same memory address, only a single transaction is sent to the mem-
ory controller.

Thread divergence occurs when different threads in the same
warp execute different instructions. On GPU architectures, all threads
in a warp must be executing the same instruction; when different
threads must execute different instructions, some of the threads in
the warp are “disabled” and sit idle while the other threads perform
useful work.

Because of the way that GPUs manage thread divergence, naïve
recursive traversal algorithms can suffer from extreme thread di-
vergence. If one thread in a warp makes a method call, all other
threads will wait until the call returns before proceeding; as recur-
sive calls can lead to long call chains, divergence can substantially
decrease warp-level parallelism [8]. In contrast, autorope-enabled
traversal algorithms do not suffer significant divergence: because
the recursive method is translated into a loop over a stack, control
immediately re-converges at the top of the loop, even as the threads
diverge in the tree.

Interestingly, by reducing thread divergence, autorope implemen-
tations inhibit memory coalescing: as soon as threads’ traversals
differ, they begin accessing different parts of the tree at the same
time, and the threads are unlikely to return to the same part of the
tree in the future. We find that the penalty of losing memory coher-
ence far outweighs the benefit of decreased thread divergence. To
address this, we introduce lockstep traversal, a transformation for
unguided traversals (i.e., traversals with a single call set; see Sec-
tion 3.2.1) which deliberately forces threads to diverge in order to
keep them in sync in the tree, promoting memory coalescing.

4.2 Overview of lockstep traversal

In a lockstep traversal, rather than considering the traversals per-
formed by individual points, the algorithm is recast in terms of the
traversal performed by an entire warp. When a point is truncated
at an interior node, n©, the point does not immediately move to the
next node in its traversal. Instead, if other points in the warp wants
to continue traversing the subtree rooted at n©, the truncated point
is carried along with the other points in the warp, but masked out
so that it does not perform computation. A warp only truncates its
traversal when all the points in the warp have been truncated. Then,
when the warp’s traversal returns to the tree node which the trun-
cated point would have visited next, it is unmasked, and resumes its
computation. Essentially, lockstep traversal forces autorope imple-
mentations to implement the same thread divergence behavior the
GPU naturally provides for recursive implementations [8].

The masking and unmasking can be efficiently realized by push-
ing a mask bit-vector onto the rope stack marking whether a point
should visit a child or not. When a warp visits a node, the mask
bit-vector determines whether a given thread performs any compu-
tation or not. If a thread would truncate at a node (i.e., it would re-
turn from the recursive call), the mask bit for that thread is cleared.
When deciding whether to continue its traversal, the warp con-
structs a new mask using a special warp voting/bit masking func-
tion3. If all bits in the mask are cleared, the warp stops its traversal.
If not, the warp continues its traversal, and propagates the mask us-
ing the rope stack. Figure 8 shows how the autorope version of a
simple traversal code implements lockstep traversal.

There are multiple consequences of lockstep traversal. First, if
multiple points in a warp have traversals that visit the same tree

3In our example a special function performs a bitwise and of each
mask to produce a new mask that is given to each thread of the
warp. On nVidia GPUs the ballot thread voting instruction can be
used to implement an equivalent operation.

1 void r e c u r s e ( node r o o t , p o i n t p t ) {
2 u i n t mask ;
3 s t a c k s t k = new s t a c k ( ) ;
4 s t k . push ( r o o t , ~ 0 ) ; / / a l l t h r e a d s a c t i v e
5 whi le ( ! s t k . i s _ e mp t y ( ) ) {
6 r o o t = s t k . peek ( 0 ) ;
7 mask = s t k . peek ( 1 ) ;
8 s t k . pop ( ) ;
9 i f ( b i t _ s e t ( mask , t h r e a d I d ) ) {

10 / / t h i s t h r e a d i n t h e warp i s s t i l l a c t i v e
11 i f ( ! c a n _ c o r r e l a t e ( r o o t , p t ) )
12 b i t _ c l e a r ( mask , t h r e a d I d ) ;

14 i f ( i s _ l e a f ( r o o t ) ) {
15 u p d a t e _ c o r r e l a t i o n ( r o o t , p t ) ;
16 b i t _ c l e a r ( mask , t h r e a d I d ) ;
17 }
18 }
19 / / combine mask from a l l t h r e a d s i n warp
20 mask = warp_and ( mask ) ;
21 i f ( mask != 0) {
22 / / a t h r e a d i s s t i l l a c t i v e
23 s t k . push ( r o o t . r i g h t , mask ) ;
24 s t k . push ( r o o t . l e f t , mask )
25 }}}

Figure 8. Lockstep traversal version of code in Figure 6

node, lockstep traversal ensures that all the points visit the node at
the same time. Hence, all threads in the warp will be loading from
the same memory location.

Second, as mentioned above, lockstep traversal only applies to
unguided, single-call-set traversals. In traversals with multiple call
sets, traversals are more likely to diverge. Further, because different
points have different traversal orders, it is simply infeasible to keep
the points in sync with each other. Section 4.3 discusses circum-
stances under which a multi-call-set algorithm can be transformed
to a single-call-set version amenable to lockstep traversal.

Finally, a warp will visit all the tree nodes in the union of its con-
stituent points’ traversals. In contrast, in a non-lockstep implemen-
tation, a warp will take time proportional to the longest traversal
in the warp. This means that overall traversal time for a lockstep
implementation can be longer than if the points were allowed to
freely perform their traversals. Thus, if the threads in a warp have
significantly divergent traversals, lockstep traversal may perform
worse than the non-lockstep version. Section 4.4 discusses how to
promote the similarity of traversals in a warp.

4.3 Lockstep for multi-call-set algorithms

In many guided traversal (multi-call-set) algorithms, the multiple
call-sets are purely a performance optimization: by visiting chil-
dren nodes in a different order, a thread’s traversal can terminate
earlier, but regardless of the order of traversal, the result of the
computation will be the same. For example, in the nearest-neighbor
code of Figure 5, points prioritize which part of the tree to look for
their nearest neighbor, resulting in two call sets. While this prior-
itization is an important performance optimization, it is not a cor-
rectness issue: even if a point chose the “wrong” call set, it would
still find its nearest neighbor.

If a programmer can indicate (through annotation) that the mul-
tiple call sets are semantically equivalent (i.e., that they only offer
different performance), we can automatically transform an algo-
rithm to force all points in a warp to use a single call set at each
step. We perform a simple majority vote between the threads in a
warp, and then execute only the most popular call-set. This effec-
tively turns a multi-call-set algorithm into a (dynamically) single-
call-set algorithm. Note that even though all the threads in a par-
ticular warp will adopt the same traversal order, a different warp
may make a different set of call-set choices: there are still multi-



ple static call sets, but the transformation guarantees that there will
only be one dynamic call set per warp. Hence, this approach is
more efficient than statically choosing a single call-set for the en-
tire traversal. While this transformation, unlike the other optimiza-
tions we discuss in this paper, requires some semantic knowledge,
it requires only a simple annotation from the programmer. In the
absence of this information, we do not perform the transformation:
guided traversals will always perform non-lockstep traversals.

4.4 Point sorting

Sorting the traversals is a well-known technique for improving lo-
cality in traversal codes [19, 23]. By arranging the points care-
fully, similar traversals will execute closer together, increasing the
likelihood that nodes will be found in cache. However determin-
ing an appropriate order for points is application-specific and often
requires semantic knowledge to implement. Finding a good a pri-
ori order is especially difficult for algorithms like nearest-neighbor
search, where the order of traversal is determined dynamically.

Point sorting can be of great benefit to lockstep traversal. Sorting
ensures that nearby points—and hence the points in a given warp—
have similar traversals. As discussed above, this ensures that the
union of the warp’s traversals is not much larger than any individual
traversal, minimizing the load balance penalty incurred by lockstep
traversal. In contrast, unsorted points mean that a warp is likely
to have highly divergent traversals, and the penalty for lockstep
traversal will outweigh the load-balancing benefits.

While point sorting is algorithm-specific, and hence cannot be
automated, Jo and Kulkarni’s run-time profiling method can be
adopted to determine whether points are sorted (by drawing several
samples of neighboring points from the set of points and seeing
whether their traversals are similar [11]). If the points are sorted,
we use the lockstep implementation; otherwise we use the non-
lockstep version. Section 6 looks at the performance of both lock-
step and non-lockstep implementations of traversal algorithms on
both sorted and unsorted inputs.

5 Implementation
In this section we discuss our automatic approach to replacing the
CPU based recursive traversal with a fast GPU kernel. We also dis-
cuss several important decisions that must be made with respect to
memory layout and storage, GPU tree representation, etc. These
transformations are implemented in a C++ source-to-source com-
piler built on top of the ROSE compiler framework4.

5.1 Identifying the algorithmic structure

The first step in translating traversal algorithms to GPUs is iden-
tifying the key components of traversal algorithms: the recursive
tree structure itself, the point structures that store point-specific in-
formation for each traversal, the recursive method that performs the
recursive traversal, and the loop that invokes the repeated traversals.
Jo and Kulkarni discussed approaches to automatically identifying
these components, based on type information (the recursive struc-
ture contains a recursive field), structural analysis (the recursive
method is recursive with a recursive structure argument), simple
annotations (the loop is annotated to assert there are no inter-point
dependencies) and heuristics (the point consists of any loop-variant
arguments to the recursive function).

5.2 Transforming CPU traversals for the GPU

After identifying a repeated recursive traversal that can be paral-
lelized onto the GPU we replace the original CPU implementation

4http://rosecompiler.org

1 void r e c u r s e ( o c t _ n o d e p , o c t _ n o d e r o o t , f l o a t dsq ) {
2 i f ( ! f a r _ e n o u g h ( r o o t , p ) && r o o t . t y p e != LEAF) {
3 f o r ( i = 0 ; i < 8 ; i ++)
4 r e c r u s e ( p , c h i l d , dsq ∗ 0 . 2 5 ) ;
5 } e l s e {
6 u p d a t e ( r o o t , p ) ;
7 }
8 }

(a) Barnes-Hut recursive call before transformation

1 void r e c u r s e ( gpu_params params ) {
2 f o r ( p i d = b l o c k I d x . x∗blockDim . x + t h r e a d I d x . x ;
3 p i d < params . n ; p i d += gridDim . x∗blockDim . x ) {
4 p = params . b o d i e s [ p i d ] ;
5 STACK_INIT ( ) ;
6 STACK_PUSH( params . r o o t , params . dsq ) ;
7 whi le ( sp >= 0) {
8 STACK_POP( r o o t , dsq ) ;
9 node0 = params . nodes0 [ r o o t ] ;

10 i f ( ! f a r _ e n o u g h ( node0 , p ) && node0 . t y p e != LEAF) {
11 node1 = params . nodes1 [ r o o t ] ;
12 f o r ( i = 7 ; i >= 0 ; i−−)
13 STACK_PUSH( node1 . c h i l d r e n [ i ] , dsq ∗ 0 . 2 5 ) ;
14 } e l s e {
15 u p d a t e ( node0 , node1 , p ) ;
16 }
17 }}}

(b) Barnes-Hut recursive call after transformation

Figure 9. Barnes-Hut recursive call transformation

with a GPU kernel call. We separate our discussion of the transfor-
mation into two steps:

1. Transforming the recursive function call into an iterative GPU
traversal kernel and,

2. Replacing the point loop and recursive function call with
GPU kernel invocation.

Transforming the recursive traversal The first step to mapping
the traversal to the GPU is preparing the recursive function for the
autoropes transformation discussed in Section 3.2.2. Autoropes
only requires that a function be expressed in pseudo-tail-recursive
form to be correctly applied. While our current benchmarks are all
pseudo-tail-recursive, we can apply a systematic transformation to
restructure arbitrary recursive functions into pseudo-tail-recursive
form, which we do not describe due to space limitations.

Figure 9a shows the original Barnes-Hut recursive traversal and
the resulting GPU version is given in Figure 9b. First, all of the
function arguments are replaced by a special structure that contains
references to the original arguments passed into the recursive func-
tion. The GPU maintains a separate address space for all data, thus
we must not only provide the original function arguments but also
pointers to the GPU-resident copies of data structures.

The loop that repeatedly calls the traversal function will be par-
allelized by the CUDA call (as discussed below), but it can only
execute a finite number of iterations. Hence, we strip mine the
loop and move the inner loop into the recursive function, updat-
ing the initialization and increment statements so that each thread
only processes one point per thread grid (lines 2–3 in Figure 9b).
Finally, the traversal loop is introduced and the recursive call sites
are replaced with stack pushes as described in Section 3.

Layout of rope stack and tree nodes An important consideration
is how to lay out the rope stack and the nodes of the tree. The most
general approach for laying out the stacks is to allocate global GPU
memory for each threads’ stack where items are arranged such that
if two adjacent threads are at the same stack level their accesses are



made to contiguous location in memory, providing the best oppor-
tunity for memory coalescing. In other words, the threads’ stacks
are interleaved in memory, rather than having each thread’s stack
contiguous in memory.

We can further optimize the stack storage if traversals are per-
formed in lockstep: all threads in a warp will perform the same
traversal, allowing any data which is not dependent on a particular
point to be saved per warp rather than per thread. Furthermore, if
the depth of the tree is reasonably small then the fast shared mem-
ory can be used to store all or part of the stack, reducing the amount
global memory access. For example in the Barnes-Hut traversal we
can apply lockstep traversal and use shared memory to maintain the
rope stack once per warp.

We must also consider how to represent the nodes of the tree in
memory. Typically for GPU applications, an array of structures is
transformed into a structure of arrays to facilitate memory coalesc-
ing, because adjacent threads in a warp will access fields of adja-
cent nodes. However, because we are accessing nodes of a tree,
there is limited opportunity to achieve a coalesced access pattern
that would exploit the structure-of-arrays layout. We have found
that the optimal way to organize nodes is to split the original struc-
ture into sets of fields based on usage patterns in the traversal. For
example, in our transformed Barnes-Hut kernel we load a partial
node that only contains the position vector of the current node and
its type (line 9). If the termination condition is not met then we
continue with the traversal and load another partial node (line 11)
that contains the indices of the nodes’ children.

Because the point data is copied to new storage during the traver-
sal, incorrect values may be computed if there are alternate access
paths to access the point data that are not transformed to use the
copied data. Rather than performing a complex alias analysis to
identify and transform all such access paths, we adopt a conserva-
tive, field based approach [9]. The copy-in/copy-out approach is
safe as long as (i) point fields read during traversal are not written
via other access paths and (ii) point fields written during traversal
are not read via other access paths.

Replacing the point loop with GPU kernel Our transformation
only targets the repeated recursive traversal of the program thus
care must be taken to preserve the original structure of the rest of
the code. As we discussed above, the point loop is strip-mined and
moved into the traversal function along with the other statements
of the point loop while any code that remains outside the traversal
is not modified. Since there may be arbitrary statements above and
below the recursive function call the point loop is split at the recur-
sive call site into a prologue and epilogue. Any variables that are
read after the recursive function call are saved to intermediate stor-
age and restored at the beginning of the epilogue. Because the GPU
memory resides in a separate address space we must also copy any
data to and from the GPU that is live-in and -out of the point loop,
and update CPU-resident data after the GPU kernel exits. Finally,
before the traversal kernel is invoked, an identical linearized copy
of the tree is constructed using a left-biased linearization, with the
nodes structured according to layout strategy mentioned above, and
copied to the GPU’s global memory.

6 Evaluation
We evaluate our techniques on four important scientific and engi-
neering traversal algorithms by comparing the overall performance
of multi-threaded CPU codes against GPU implementations de-
rived directly from our techniques.

6.1 Evaluation Methodology

To demonstrate the general applicability of our techniques, we trans-
formed several important tree traversal algorithms from different
application domains. For each benchmark, we evaluate non-lockstep
and lockstep versions of the algorithms (applying the call-set-reduction
optimization for guided traversals, as discussed in Section 4.3).

We compare these implementations against two alternative im-
plementations. First, we compare against a naïve GPU implemen-
tation that uses CUDA compute capability 2.0’s support for recur-
sion to directly map the recursive algorithm to the GPU. We use a
masking technique similar to that described in Section 4 to imple-
ment non-lockstep and lockstep variants of the recursive implemen-
tation5. In effect, the only difference between the naïve implemen-
tations and ours is the use of autoropes. We also compare against
parallel CPU implementations of the same traversal algorithms.

CPU benchmarks were compiled using gcc 4.4.7 with optimiza-
tion level -O3 and GPU benchmarks were compiled using nvcc for
compute version 2.0 with CUDA toolkit version 5.06.

6.1.1 Platforms

We evaluate our benchmarks on two systems:

• The GPU system contains one nVidia Tesla C2070 GPU
which contains 6GB of global memory, 14 SMs with 32 cores
per SM. Each SM contains 64KB of configurable shared mem-
ory.

• The CPU system contains four AMD Opteron 6176 proces-
sors that contain 12 cores running at 2300MHz. Each CPU
has 64Kb L1 data cache per core, 512kB L2 cache per core,
two 6MB shared L3 caches and 256GB of main memory.

Both Platforms run RHEL6.0 with Linux kernel v2.6.32.

6.1.2 Benchmarks

We evaluated our techniques on four benchmarks, each with multi-
ple inputs, for a total of 18 benchmark/input pairs. For each input,
we evaluated both sorted and unsorted versions of the input.

Barnes-Hut (BH) is a fast O(nlgn) n-body simulation [1] that per-
forms and efficient gravitational simulation between objects in an
environment represented by an oct-tree. It is an unguided algo-
rithm. We derived our implementation from the Lonestar bench-
mark suite [12], and ran our inputs for five timesteps. The inputs
are Plummer, the class C input from the Lonestar benchmark suite
that contains 1 million bodies of equal mass generated from the
Plummer model, and Random, a set of 1 million bodies of equal
mass, initialized with random position and velocity.

Point Correlation (PC) is a data mining algorithm that computes
the 2-point correlation statistic by traversing a kd-tree to find, for
each point in a data set, how many other points are in a given ra-
dius [20]. PC is an unguided algorithm. We evaluate four different
inputs: Covtype, an input derived from a 580,000 54-dimension
forest cover type dataset that has been reduced to 200,000 7-dimensional
points by random projection; Mnist, derived from a 8,100,000 784-
dimension dataset of handwritten digits that has been reduced to
200,000 7-dimensional points by random projection; Random, con-
sisting of 200,000 7-dimensional points with random coordinate
5Although lockstep traversal should have no effect on recursive im-
plementations, we find that it improves performance. We speculate
that because the transformation explicitly forces thread divergence,
the compiler is able to generate more efficient code for the lockstep
variant using predication.
6https://developer.nvidia.com/cuda-toolkit



Sorted Unsorted
Benchmark Input Type Traversal Avg. # Nodes Speedup Improv. Traversal Avg. # Nodes Speedup Improv.

Time (ms) vs 1 vs 32 vs Recurse Time (ms) vs 1 vs 32 vs Recurse
Barnes Hut Plummer L 669.07 3345 150.07 7.18 1409% 4580.48 22107 32.55 1.85 1364%

N 8206.30 2551 12.24 0.59 -26% 13938.18 2551 10.70 0.61 210%
Random L 213.71 1068 211.16 12.77 1400% 2467.92 11909 34.85 2.75 1348%

N 2391.84 671 18.87 1.14 -19% 4517.50 671 19.04 1.50 416%
Point Correlation Covtype L 5738.00 76160 123.08 15.48 199% 18533.40 257771 45.31 4.60 202%

N 48582.40 28057 14.54 1.83 -2% 37871.60 28057 22.17 2.25 345%
Mnist L 2070.60 26188 48.93 4.68 173% 7204.40 97653 24.24 1.94 188%

N 9707.00 6138 10.44 1.00 71% 8689.40 6138 20.10 1.61 618%
Random L 3125.40 37618 52.20 6.04 186% 11586.60 156353 23.00 2.52 202%

N 17017.40 10161 9.59 1.11 42% 16978.00 10161 15.70 1.72 504%
Geocity L 1306.80 39723004 175.28 38.71 285% 6286.00 378105376 41.90 2.41 344%

N 4787.60 20705 47.84 10.57 40% 16451.60 20705 16.01 0.92 221%
k-Nearest Neighbor Covtype L 2907.00 25277 4.72 0.28 332% 16049.00 197160 1.57 0.12 57%

N 1816.40 1982 7.56 0.45 180% 2408.50 1982 10.48 0.77 269%
Mnist L 6396.00 60172 4.54 0.26 181% 16153.00 199840 3.28 0.24 64%

N 3827.30 4150 7.59 0.44 161% 5359.30 4150 9.89 0.74 234%
Random L 2008.00 16695 9.63 0.43 599% 16234.00 200000 2.30 0.17 59%

N 2448.00 2937 7.90 0.35 84% 3692.90 2937 10.11 0.73 244%
Geocity L 114.00 415 5.20 0.27 273% 10689.20 185803 0.07 0.00 78%

N 4132.90 55 0.14 0.01 1% 3209.20 55 0.23 0.01 7%
Nearest Neighbor Covtype L 12350.20 53948 27.09 3.17 124% 58470.80 259132 7.48 0.70 131%

N 38116.10 16669 8.78 1.03 348% 34814.90 16669 12.57 1.18 925%
Mnist L 14673.60 65812 25.64 3.19 119% 60540.20 267645 8.26 0.87 124%

N 43886.00 19020 8.57 1.07 427% 46764.00 19020 10.70 1.13 769%
Random L 1869.70 8808 15.32 0.75 110% 15666.10 73011 2.53 0.19 107%

N 2559.00 1838 11.19 0.55 427% 3846.00 1838 10.30 0.77 866%
Geocity L 2270.40 21839 129.87 30.83 298% 11506.30 157037 29.04 1.44 511%

N 11730.70 19545 25.14 5.97 15% 26445.50 19545 12.63 0.63 768%
Vantage Point Covtype L 1787.00 11814 6.13 0.48 18% 10235.4 109719 2.25 0.14 65%

N 1623.40 686 6.75 0.52 295% 1704.60 686 13.50 0.81 365%
Mnist L 4034.20 36347 11.46 0.87 43% 13835.00 150992 6.61 0.39 66%

N 5114.00 2763 9.04 0.68 412% 5599.80 2763 16.33 0.96 451%
Random L 4541.00 41054 11.13 1.00 45% 13130.60 143189 7.14 0.43 67%

N 5074.60 2659 9.96 0.90 401% 5355.00 2659 17.50 1.05 453%
Geocity L 711.50 344 1.20 0.45 -51% 802.00 21921 1.90 0.10 351%

N 731.60 94 1.17 0.44 -10% 1316.50 94 1.16 0.06 -46%

Table 1. Performance summary of transformed traversals

values; and Geocity a 200,000 2-dimensional point city location
dataset.

k-Nearest Neighbor (kNN) finds, for a given point in a data set,
its k nearest neighbors. This algorithm operates by traversing a
kd-tree to prune portions of the space that cannot contain nearby
points. kNN is a guided algorithm with two call sets. We run the
same input sets from PC for all platform and benchmark variants.

Nearest Neighbor (NN) is a variation of nearest neighbor search
with a different implementation of the kd-tree structure. NN is a
guided algorithm with two call sets. We ran the same input sets
from PC for all platform and benchmark variants.

Vantage Point Tree (VP) is also a variation of nearest neighbor
search using a vantage point tree [27]. Like NN, VP is also a guided
two call set algorithm. We ran the same input sets from PC for all
platform and benchmark variants.

6.2 Results

Table 1 summarizes the results of our techniques. Columns 1–3
specify the name of the benchmark, the input set used and the type
of traversal performed. Lockstep traversals are indicated by an L,
non-lockstep traversals are indicated by an N. Lockstep variants
are automatically produced for BH and PC, while kNN, NN and
VP use the annotation described in Section 4.3 to enable the lock-
step variant. To characterize the performance of our techniques we
measure the total traversal time, average number of nodes accessed
per point, the speedup of our GPU traversal versus a single-thread
and 32-thread CPU implementation, and the improvement against
a recursive GPU implementation. Columns 4–8 contain the results
for sorted inputs and columns 9–13 are the results for unsorted in-

puts. Figures 10 and 11 compare our GPU implementations against
CPU implementations as the number of CPU threads increases (all
numbers normalized to GPU performance).

Though direct performance comparisons to hand-written imple-
mentations are difficult due to lack of source, we note that our gen-
eral speedups over CPU implementations are comparable to those
reported for hand-tuned versions of BH [2] and NN [21], despite
our application-agnostic approach.

Due to the differences in behavior between irregular applica-
tions, as well as the input-dependent behavior within a given irreg-
ular application, there are no universal performance trends. How-
ever, we can see general patterns, despite the occasional outlier.

In general, we find that our GPU implementations are far faster
than naïve recursive implementations on GPUs. Recall that lock-
step traversal can also be applied to the recursive GPU implementa-
tions, so all comparisons are apples-to-apples. In almost all cases,
our autoropes transformation, which turns the recursive traversal
into an iterative one, is able to deliver significant improvements.

Overall, we find that the best variant (lockstep vs. non-lockstep)
for each benchmark/input pair far outperforms the single-threaded
CPU version (except kNN for the Geocity input, discussed below).
Furthermore, as shown in Figures 10 and 11, except for a handful
of inputs, the best GPU variants of our benchmarks outperform the
CPU implementation up to at least 8 threads, and in most cases
outperform the CPU implementation even at 32 threads.

In all cases, lockstep implementations traverse more nodes than
their non-lockstep counterparts. Nevertheless, for sorted inputs,
lockstep implementations outperform non-lockstep ones; the ex-
tra work performed by lockstep traversal is outweighed by lock-
step’s other performance benefits. For unsorted inputs, the story is
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(i) VP Lockstep
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Figure 10. Speedup of GPU traversal versus CPU (sorted)
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Figure 11. Speedup of GPU traversal versus CPU (unsorted)

more muddled: single-call-set applications (BH and PC) still bene-
fit from lockstep traversal, while multi-call-set applications do not.
Section 6.3 discusses the reasons for this in more detail.

In the case of NN, kNN and VP, the lockstep variants required
a small amount of input from the programmer. Looking just at the
non-lockstep versions of these benchmarks, we see that for most in-
puts (sorted and unsorted) NN is faster even when the CPU version
uses 32 threads, while kNN is faster to 8 threads for sorted inputs
and 12 threads for unsorted inputs, and VP is faster to 12 threads

for sorted inputs and 20 threads for unsorted inputs. Note that the
reason the GPU versions appear to do better on unsorted inputs is
because the CPU versions do worse.

There is one consistent outlier to these broad trends: the Geocity
input performs especially well on the CPU for both kNN and VP,
and as a result, the GPU versions are considerably slower than the
CPU version. This is primarily because Geocity is a low-dimension
input, and as a result, traversals are very short, promoting good
locality and performance on the CPU [10]. Furthermore, the input



Benchmark Input Sorted Unsorted
Barnes Hut Plummer 1.33 (1.35) 8.97 (9.40)

Random 1.51 (1.53) 17.35 (17.78)
Point Correlation Covtype 4.16 (6.25) 20.71 (40.11)

Mnist 6.20 (6.20) 27.49 (8.24)
Random 4.35 (4.88) 20.00 (23.21)
Geocity 101.08 (207.30) 1.46 (1.47)

k-Nearest Neighbor Covtype 19.59 (30.21) 187.54 (285.08)
Mnist 17.03 (19.58) 60.86 (70.12)

Random 6.87 (8.62) 89.29 (102.89)
Geocity 4.03 (8.99) 1479.11 (1591.59)

Nearest Neighbor Covtype 5.20 (8.37) 35.85 (67.86)
Mnist 4.46 (5.66) 20.68 (27.99)

Random 5.64 (6.29) 50.60 (58.31)
Geocity 4.62 (31.69) 618.00 (885.71)

Vantage Point Covtype 4.70 (5.24) 39.34 (41.87)
Mnist 5.58 (5.87) 22.05 (22.47)

Random 6.62 (7.01) 20.73 (21.26)
Geocity 3.68 (4.74) 57.76 (91.04)

Table 2. Average work expansion per warp of lockstep traversals
(standard deviation in parenthesis)

is highly clustered, leading to extremely variable behavior on the
GPU: traversals in a warp may have very different lengths, leading
to load imbalance and hence poor performance.

On the whole, by choosing the right set of optimizations, we can
automatically map traversal algorithms to GPUs and achieve results
that are (a) substantially better than naïve GPU implementations;
(b) much faster than single-threaded CPU implementations; and
(c) competitive with even highly-threaded CPU implementations.
Crucially, all of this can be achieved without taking advantage of
application-specific knowledge.

6.3 Work expansion in lockstep traversals
As we discussed in Section 4.2, lockstep traversal can lead to sig-
nificant gains when points of a warp perform similar traversals
or potentially degraded performance when traversals diverge and
threads in a warp sit idle while visiting unimportant nodes. We
measure the cost of this divergence by comparing the number of
nodes accessed by each warp in the lockstep traversal with the num-
ber of nodes in the longest traversal of each warp (which captures
how long a warp would take to finish in the non-lockstep variant).
This metric measures the amount of work expansion that occurs
due to lockstep traversal; Table 2 shows the work expansion for
each benchmark.

We see that sorting is a highly effective optimization when used
in conjunction with lockstep traversals, especially for single call-set
algorithms such as PC and BH. We also note that PC and BH have
low work expansion in the unsorted case compared to the other
benchmarks, which is why the lockstep variant still performs well
with unsorted points. Interestingly BH achieves better convergence
of its traversals than PC even though there are more potential paths
in the oct-tree traversal. We attribute the higher work expansion of
PC to the size of the adjustable correlation radius that determines
when a traversal truncates; by decreasing this radius traversals will
truncate more quickly leading to better load balance.

While we expect and found sorting to benefit lockstep traver-
sals of single call-set algorithms, multi-call-set algorithms are more
susceptible to work expansion because the traversals take sub-optimal
paths through the tree due to our dynamic single-call-set optimiza-
tion (discussed in Section 4.3), causing traversals that take the “wrong”
path to run longer. This tradeoff is clearly shown by the extreme
level of work expansion in the kNN benchmark, where the non-
lockstep traversals performed best even for sorted inputs.

7 Related work
Much of the work on running tree traversal algorithms on GPUs has
focus on the graphics domain, where hierarchical structures such

as kd-trees are repeatedly traversed to compute ray-object intersec-
tions efficiently. Foley et al. develop two stackless approaches for
kd-tree traversals that use per-ray bounding boxes to prune nodes
that have already been searched [3]. Further work by Hughes et al.
use an implicit kd-tree structure to compute the position of the next
node, avoiding excessive backtracking [7]. Popov et al. expand on
the stackless kd-tree traversal algorithm by adding ropes to the leaf
nodes of the tree, as discussed in Section 3 [21]. Similar work on
bounding volume hierarchy (BVH) traversals incorporates knowl-
edge of the traversal structure to build a simple state machine to de-
termine the next node to visit [6]. Another implementation of BVH
traversals in GPUs groups rays into packets and then traverses the
tree in lock step, sharing a per-packet stack to avoid traversal diver-
gence between rays in the same packet [5]. All of these techniques
take advantage of application-specific knowledge.

Researchers also focus on efficiently implementing other, non-
tree traversal, irregular codes on GPUs. Vineet et al. develop
a GPU implementation of Boruvka’s minimum spanning tree al-
gorithm using data parallel primitives such as sort, scan and re-
duce [24]. Merrill et al. discuss parallelization strategies and per-
formance characterization of GPU graph traversals using various
algorithms based on data parallel primitives [18]. Wei et al. map
linked-list prefix computation to GPUs by using a splitting tech-
nique and other semantic knowledge to partition the computation [25].
Similar work on list ranking discusses the need to ensure load bal-
ancing to achieve good performance for irregular algorithms [22].
Méndez-Lojo et al. present a GPU implementation of inclusion-
based points-to analysis that performs graph rewrites in terms of
matrix-matrix multiplication by leveraging clever encodings of a
compressed sparse row representation [17]. Huo et al. examined
efficient scheduling of recursive control flow on GPUs, and present
results which improve upon traditional post-dominator based re-
convergence mechanisms designed to handle thread divergence due
to control flow within a procedure [8].

GPU performance for irregular programs suffers from irregular
memory references. Zhang et al. develop G-Streamline, a software
framework which removes dynamic irregularities from GPU appli-
cations through data reordering and job swapping [28]. Wu et al.
show that finding an optimal solution to irregular memory refer-
ences is NP-complete, and illuminate the space, time and complex-
ity tradeoffs of algorithm designs for data reorganization [26].

Prior work in enhancing temporal locality for tree traversals on
CPUs can also benefit GPUs. Sorting approaches (Section 4.4) use
application semantics to schedule similar traversals consecutively,
for Barnes-Hut [23] and ray tracing [16, 19]. Jo and Kulkarni de-
velop automatic compiler transformations to enhance temporal lo-
cality for tree traversals, analogous to loop tiling in regular pro-
grams [10, 11]. Jo et al. also develop transformations to facili-
tate vectorization of tree traversals, targeting SIMD instructions on
commodity CPUs [9].

8 Conclusions

We described a series of transformations that enable the efficient
execution of tree traversal algorithms on GPUs. These techniques,
unlike in most prior work on GPU implementations of irregular
algorithms, do not rely on application-specific semantic knowl-
edge, instead leveraging only structural properties of traversal algo-
rithms. We show that our transformations produce GPU implemen-
tations that are superior to naïve GPU implementations and com-
petitive with large-scale multithreaded CPU implementations.
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