
1

mjb – March 22, 2021

1

Computer Graphics

OpenMP Reduction Case Study:
Trapezoid Integration Example

trapezoid.pptx

Mike Bailey

mjb@cs.oregonstate.edu

mjb – March 22, 2021

2

Computer Graphics

Find the area under the curve y = sin(x)

for 0 ≤ x ≤ π
using the Trapezoid Rule

00
(sin) cos | 2.0x dx x

 Exact answer:

mjb – March 22, 2021

3

Computer Graphics

Don’t do it this way !

const double A = 0.;
const double B = M_PI;
double dx = (B - A) / (float) (numSubdivisions – 1);
double sum = (Function(A) + Function(B)) / 2.;

omp_set_num_threads(numThreads);
#pragma omp parallel for default(none), shared(dx,sum)
for(int i = 1; i < numSubdivisions - 1; i++)
{

double x = A + dx * (float) i;
double f = Function(x);
sum += f;

}
sum *= dx;

Load sum
Add f
Store sum

What if the scheduler decides to
switch threads right here?

Assembly code:

• There is no guarantee when each thread will execute this line

• There is not even a guarantee that each thread will finish this line
before some other thread interrupts it.

mjb – March 22, 2021

4

Computer Graphics

0.469635
0.517984
0.438868
0.437553
0.398761
0.506564
0.489211
0.584810
0.476670
0.530668
0.500062
0.672593
0.411158
0.408718
0.523448

0.398893
0.446419
0.431204
0.501783
0.334996
0.484124
0.506362
0.448226
0.434737
0.444919
0.442432
0.548837
0.363092
0.544778
0.356299

The answer should be 2.0 exactly, but in 30 trials, it’s not even close.
And, the answers aren’t even consistent. How do we fix this?

mjb – March 22, 2021

5

Computer Graphics

The answer should be 2.0 exactly, but in 30 trials, it’s not even close.
And, the answers aren’t even consistent. How do we fix this?

Trial #

su
m

mjb – March 22, 2021

6

Computer Graphics

#pragma omp parallel for shared(dx)
for(int i = 0; i < numSubdivisions; i++)
{

double x = A + dx * (float) i;
double f = Function(x);
#pragma omp atomic
sum += f;

}

There are Three Ways to Make the Summing Work Correctly:
#1: Atomic

1

• More lightweight than critical (#2)
• Uses a hardware instruction CMPXCHG (compare-and-exchange)
• Can only handle these operations:

x++, ++x, x--, --x
x op= expr , x = x op expr , x = expr op x
where op is one of: +, -, *, /, &, |, ^, <<, >>

1 2

3 4

5 6

2

mjb – March 22, 2021

7

Computer Graphics

#pragma omp parallel for shared(dx)
for(int i = 0; i < numSubdivisions; i++)
{

double x = A + dx * (float) i;
double f = Function(x);
#pragma omp critical
sum += f;

}

There are Three Ways to Make the Summing Work Correctly:
#2: Critical

2

• More heavyweight than atomic (#1)
• Allows only one thread at a time to enter this block of code (similar to a mutex)
• Can have any operations you want in this block of code

mjb – March 22, 2021

8

Computer Graphics

There are Three Ways to Make the Summing Work Correctly:
#3: Reduction

#pragma omp parallel for shared(dx),reduction(+:sum)
for(int i = 0; i < numSubdivisions; i++)
{

double x = A + dx * (float) i;
double f = Function(x);
sum += f;

}

3

• OpenMP creates code to make this as fast as possible
• Reduction operators can be: + , - , * , & , | , ^ , && , || , max , min

mjb – March 22, 2021

9

Computer Graphics

Speed of Reduction vs. Atomic vs. Critical

(up = faster)

1 2 3

P
e

rf
o

rm
a

n
c

e

mjb – March 22, 2021

10

Computer Graphics

So, do it this way !

const double A = 0.;
const double B = M_PI;

double dx = (B - A) / (float) (numSubdivisions – 1);

omp_set_num_threads(numThreads);

double sum = (Function(A) + Function(B)) / 2.;

#pragma omp parallel for default(none),shared(dx),reduction(+:sum)
for(int i = 1; i < numSubdivisions - 1; i++)
{

double x = A + dx * (float) i;
double f = Function(x);
sum += f;

}

sum *= dx;

mjb – March 22, 2021

11

Computer Graphics

Two Reasons Why Reduction is so Much Better in this Case

1. Reduction secretly creates a temporary private
variable for each thread’s running sum. Each thread
adding into its own running sum doesn’t interfere
with any other thread adding into its own running
sum, and so threads don’t need to slow down to get
out of the way of each other.

2. Reduction automatically creates a binary tree
structure, like this, to add the N running sums in
log2N time instead N time.

mjb – March 22, 2021

12

Computer Graphics

O(N) vs. O(log2N)

Parallel addition:
Adding 8 numbers requires 3 steps
Adding 1,048,576 (1M) numbers requires 20 steps

Serial addition:
Adding 8 numbers requires 7 steps
Adding 1,048,576 (1M) numbers requires 1,048,575 steps

7 8

9 10

11 12

3

mjb – March 22, 2021

13

Computer Graphics

If You Understand NCAA Basketball Brackets, You Understand Power-of-Two Reduction

Source: ESPN

mjb – March 22, 2021

14

Computer Graphics

float *sums = new float [omp_get_num_threads()];
for(int i = 0; i < omp_get_num_threads(); i++)

sums[i] = 0.;

#pragma omp parallel for private(myPartialSum),shared(sums)
for(int i = 0; i < N; i++)

{
myPartialSum = …

sums[omp_get_thread_num()] += myPartialSum;
}

float sum = 0.;
for(int i= 0; i < omp_get_num_threads(); i++)

sum += sums[i];

delete [] sums;

• This seems perfectly reasonable, it works, and it gets rid of the problem of
multiple threads trying to write into the same reduction variable.

• The reason we don’t do this is that this method provokes a problem called
False Sharing. We will get to that when we discuss caching.

Why Not Do Reduction by Creating Your Own sums Array,
one for each Thread, Like This?

13 14

