OpenMP Reduction Case Study:
Trapezoid Integration Example

Oregon State
University
Mike Bailey

mjb@cs.oregonstate.edu

(ea
i
Oregon State
University
Computer Graphics
trapezoid.pptx mjb — March 22, 2021
Find the area under the curve y = sin(x) 2
forO<x<Tt
using the Trapezoid Rule
i
0.9
/ N
1 15 2 2.5 3 35
T, .

A Exact answer: _[0 (sinx)dx=—cosx|[; =2.0
e

Oregon State
University
Computer Graphics

mjb — March 22, 2021

Don’t do it this way ! 3

const double A = 0.;
const double B = M_PI;

omp_set_num_threads(numThreads);

for(inti=1; i <numSubdivisions - 1; i++)

{
double x =A + dx * (float) i;
double f = Function(x);

double dx = (B -A)/ (float) (numSubdivisions — 1);
double sum = (Function(A) + Function(B)) / 2;

#pragma omp parallel for default(none), shared(dx,sum)

sum += f;
}
sum *= dx;

» There is no guarantee when each thread will execute this line

» There is not even a guarantee that each thread will finish this line

before some other thread interrupts it.

What if the scheduler decides to

Assembly code:
pa:
e Load sum
Bl <
g b A Add f
‘egon State
i ot Store sum
Computer Graphics

switch threads right here?

mjb — March 22, 2021

The answer should be 2.0 exactly, but in 30 trials, it’s not even close.4
And, the answers aren’t even consistent. How do we fix this?

0.469635
0.517984
0.438868
0.437553
0.398761
0.506564
0.489211
0.584810
0.476670
0.530668
0.500062
0.672593
0.411158
0.408718
0.523448

E—*F
Oregon State
University
Computer Graphics

0.398893
0.446419
0.431204
0.501783
0.334996
0.484124
0.506362
0.448226
0.434737
0.444919
0.442432
0.548837
0.363092
0.544778
0.356299

mjb — March 22, 2021

The answer should be 2.0 exactly, but in 30 trials, it’s not even close.5
And, the answers aren’t even consistent. How do we fix this?

| 0s

0.7

0.6

* *
* * S
L 3 L
05 p * . L 2 * Py
* e . AP X
I . B °
? » 23
L 4
03
0.2
0.1
GAE
E.l 0 5 10 15 20 25 30
T . !
Oregon State Trial #
Universil
Computer Graphics
mjb — March 22, 2021
There are Three Ways to Make the Summing Work Correctly: 6
#1: Atomic
#pragma omp parallel for shared(dx)
for(inti =0; i < numSubdivisions; i++)
{
double x = A + dx * (float) i;
double f = Function(x);
fpragma omp atomi
sum +=f;
}

* More lightweight than critical (#2)
» Uses a hardware instruction CMPXCHG (compare-and-exchange)
» Can only handle these operations:

x++, ++X, X--, --X

X OP= expr, X = X Op expr , X = expr op X

*

where op isone of: +, -, *, [, &, |, , <<, >>

Oregon State
University
Computer Graphics
mjb — March 22, 2021

There are Three Ways to Make the Summing Work Correctly:

#2: Critical

#pragma omp parallel for shared(dx)
for(inti = 0;i < numSubdivisions; i++)

double x = A + dx * (float) i;
double f = Function(x);
<#pragma omp critical >

sum +=f;

}

» More heavyweight than atomic (#1)
« Allows only one thread at a time to enter this block of code (similar to a mutex)
» Can have any operations you want in this block of code

E—*F
Oregon State
Universif
Computer Graphics

mjb — March 22, 2021

There are Three Ways to Make the Summing Work Correctly:
#3: Reduction

#pragma omp parallel for shared(dx@

for(inti =0; i < numSubdivisions; i++)

{

3]

double x = A + dx * (float) i;
double f = Function(x);
sum +=f;

* OpenMP creates code to make this as fast as possible
* Reduction operators canbe: +,-,*, &,|, ", &&, ||, max, min

‘.EAF

Oregon State
University
Computer Graphics
mjb — March 22, 2021

Speed of Reduction vs. Atomic vs. Critical
(up = faster)
s

| T
§ 30 1‘

[} 7] |

Q g 5+

] " |

E | Eaor

o s |_~

E .§ 15

o] |
S

| 3 L
c 57
7 |
5 |
o 0+
[
=

a‘T“
&/
Oregon State
University
Computer Graphics
mjb — March 22, 2021
9

So, do it this way ! 10

const double A = 0.;
const double B = M_PI;

double dx = (B - A)/ (float) (numSubdivisions — 1);

omp_set_num_threads(numThreads);

double sum = (Function(A) + Function(B)) / 2,

#pragma omp parallel for default(none),shared(dxj,reduction(+:sum)
for(inti=1; i < numSubdivisions - 1; i++)

{

double x = A + dx * (float) i;

double f = Function(x);
sum += f;

}

aﬁe .
vgﬁ& sum *= dx;
Bl /

T

Oregon State
University
Computer Graphics

mjb — March 22, 2021
10

Two Reasons Why Reduction is so Much Better in this Case "

#pragma omp parallel for shared(dx),reduction(+:sum)
for(inti=0; i < numSubdivisions; i++)

double x = A + dx * (float) i;
double f = Function(x);
sum +=f;

MegaFunctionEvaluations per Sacend

1. Reduction secretly creates a temporary private
variable for each thread’s running sum. Each thread
adding into its own running sum doesn't interfere
with any other thread adding into its own running
sum, and so threads don’t need to slow down to get
out of the way of each other.

2. Reduction automatically creates a binary tree
structure, like this, to add the N running sums in
log,N time instead N time.

Oregon State
Universif
Computer Graphics

mjb — March 22, 2021

11

O(N) vs. O(log,N) 12

2. Reduction automatically creates a binary tree
structure, like this, to add the N running sums in
log,N time instead N time.

Serial addition:
Adding 8 numbers requires 7 steps
Adding 1,048,576 (1M) numbers requires 1,048,575 steps

00000000

IKZ WAVATAVAVAVAY)

Parallel addition:
Adding 8 numbers requires 3 steps
Adding 1,048,576 (1M) numbers requires 20 steps

Computer Grapl

mjb — March 22, 2021

12

If You Understand NCAA Basketball Brackets, You Understand Power-of-Two Reduction 13

2021 NCAA DIVISION | WOMEN'S BASKETBALL CHAMPIONSHIP

FIRST ROUND SECOND ROUND REGIONALS Npm — “emaNAL REGIONALS 'SECOND ROUND. FIRST ROUND
se NALS

2 Sanord g52) s 1 ucom e :
& ~sovsar g e l—‘—‘—m e em 5
£ Uahvatey (136) o) 16 @
Olianona 5t (16] 5 Syrscuse 140 &
SUN3Z1, 30 pm B2 §
9 __South Dakotast (21-3) “

5

4§ suNaL Tpm 2
1
'SUN 321, Noom, E1

Wake Forest (12-12) o]
B

Missou
MON 3722, 7:30 pm, EU
uC Davis (13:2 12}

af
i

ULH

Wright St. (18-7) - 13) ALAMO
= ogmusy o
P o REGION

San Antonio
April4

ESPN
San Antonio San Antonio
April 2 April2

= Soumcanmmzy 1
B swomepm.er

ESPN NATIONAL CHAMPION ESPN

. —

L

Orogon St (117 5

SN, 930 pm B 5

* % Fiorida st (108 9 s Weshingion st 12:11)_ *

GeorgaTech(158) 5 s i
§ snaas,as0pm Ew WoN32z 4pm.E2 £ §
4§ seaqer 1) *
o VestVignaG16) 4

GE SNt spm EU WON32Z,2pm BV

H
angn (105 o 13_veu geo
_— | MERCADO p
oxss Rugers (144 _
£ 2 vz spme REGION WoN 322, Noon EU S §
2 sradey (17-11) 1) ——— e [11_BYU (18-5) s
. UCiAGes £ EsFni EsFni2 Bl
£ 'MON 3/22, 10 p.m., E1

ON 3122, 2 pm., E2
15

SAN ANTONIO IS

TOURNEY TOWN

Mount St Marys (174) 1)
2021 NCAA DIVISION | WOMEN'S BASKETRALL CHAMPIONSHIP

T KOO e T 5 o D ADOND N 13 T r Y

Il H

Source:

od .
Computer Graphics
mjb — March 22, 2021

13

Why Not Do Reduction by Creating Your Own sums Array, 14
one for each Thread, Like This?

float *sums = new float [omp_get_num_threads() I;
for(inti=0; i <omp_get_num_threads(); i++)
sums[i]=0;

#pragma omp parallel for private(myPartialSum),shared(sums)
for(inti=0;i<N;it+)

myPartialSum = ...

sums[omp_get_thread_num()] += myPartialSum;

}

float sum =0
for(inti= 0; i < omp_get_num_threads(); i++)
sum +=sumsliJ;

delete [] sums;

* This seems perfectly reasonable, it works, and it gets rid of the problem of
multiple threads trying to write into the same reduction variable.

» The reason we don’t do this is that this method provokes a problem called
¢ False Sharing. We will get to that when we discuss caching. . .1

14

