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Find the area under the curve y = sin(x) 2
forO<x<Tt
using the Trapezoid Rule
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A Exact answer: _[0 (sinx)dx=—cosx|[; =2.0
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Don’t do it this way ! 3

const double A = 0.;
const double B = M_PI;

omp_set_num_threads( numThreads );

for(inti=1; i <numSubdivisions - 1; i++)

{
double x =A + dx * (float) i;
double f = Function( x );

double dx = (B -A)/ (float) ( numSubdivisions — 1 );
double sum = ( Function(A) + Function(B) ) / 2;

#pragma omp parallel for default(none), shared(dx,sum)

sum += f;
}
sum *= dx;

» There is no guarantee when each thread will execute this line

» There is not even a guarantee that each thread will finish this line

before some other thread interrupts it.

What if the scheduler decides to

Assembly code:
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switch threads right here?

mjb — March 22, 2021

The answer should be 2.0 exactly, but in 30 trials, it’s not even close.4
And, the answers aren’t even consistent. How do we fix this?

0.469635
0.517984
0.438868
0.437553
0.398761
0.506564
0.489211
0.584810
0.476670
0.530668
0.500062
0.672593
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0.398893
0.446419
0.431204
0.501783
0.334996
0.484124
0.506362
0.448226
0.434737
0.444919
0.442432
0.548837
0.363092
0.544778
0.356299
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The answer should be 2.0 exactly, but in 30 trials, it’s not even close.5
And, the answers aren’t even consistent. How do we fix this?
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There are Three Ways to Make the Summing Work Correctly: 6
#1: Atomic
#pragma omp parallel for shared(dx)
for(inti =0; i < numSubdivisions; i++)
{
double x = A + dx * (float) i;
double f = Function( x );
fpragma omp atomi
sum +=f;
}

* More lightweight than critical (#2)
» Uses a hardware instruction CMPXCHG (compare-and-exchange)
» Can only handle these operations:

x++, ++X, X--, --X

X OP= expr, X = X Op expr , X = expr op X

*

where op isone of: +, -, *, [, &, |, , <<, >>
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There are Three Ways to Make the Summing Work Correctly:

#2: Critical

#pragma omp parallel for shared(dx)
for(inti = 0;i < numSubdivisions; i++ )

double x = A + dx * (float) i;
double f = Function( x );
<#pragma omp critical >

sum +=f;

}

» More heavyweight than atomic (#1)
« Allows only one thread at a time to enter this block of code (similar to a mutex)
» Can have any operations you want in this block of code
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There are Three Ways to Make the Summing Work Correctly:
#3: Reduction

#pragma omp parallel for shared(dx@

for(inti =0; i < numSubdivisions; i++)

{

3]

double x = A + dx * (float) i;
double f = Function( x );
sum +=f;

* OpenMP creates code to make this as fast as possible
* Reduction operators canbe: +,-,*, &,|, ", &&, ||, max, min
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Speed of Reduction vs. Atomic vs. Critical
(up = faster)
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So, do it this way ! 10

const double A = 0.;
const double B = M_PI;

double dx = (B - A)/ (float) ( numSubdivisions — 1 );

omp_set_num_threads( numThreads );

double sum = ( Function(A) + Function(B) ) / 2,

#pragma omp parallel for default(none),shared(dxj,reduction(+:sum)
for(inti=1; i < numSubdivisions - 1; i++)

{

double x = A + dx * (float) i;

double f = Function( x );
sum += f;

}

aﬁe .
vgﬁ& sum *= dx;
Bl /
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Two Reasons Why Reduction is so Much Better in this Case "

#pragma omp parallel for shared(dx),reduction(+:sum)
for(inti=0; i < numSubdivisions; i++)

double x = A + dx * (float) i;
double f = Function( x );
sum +=f;

MegaFunctionEvaluations per Sacend

1. Reduction secretly creates a temporary private
variable for each thread’s running sum. Each thread
adding into its own running sum doesn't interfere
with any other thread adding into its own running
sum, and so threads don’t need to slow down to get
out of the way of each other.

2. Reduction automatically creates a binary tree
structure, like this, to add the N running sums in
log,N time instead N time.
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O(N) vs. O(log,N) 12

2. Reduction automatically creates a binary tree
structure, like this, to add the N running sums in
log,N time instead N time.

Serial addition:
Adding 8 numbers requires 7 steps
Adding 1,048,576 (1M) numbers requires 1,048,575 steps

00000000
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Parallel addition:
Adding 8 numbers requires 3 steps
Adding 1,048,576 (1M) numbers requires 20 steps
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If You Understand NCAA Basketball Brackets, You Understand Power-of-Two Reduction 13
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Why Not Do Reduction by Creating Your Own sums Array, 14
one for each Thread, Like This?

float *sums = new float [ omp_get_num_threads() I;
for(inti=0; i <omp_get_num_threads(); i++)
sums[i]=0;

#pragma omp parallel for private(myPartialSum),shared(sums)
for(inti=0;i<N;it+)

myPartialSum = ...

sums[ omp_get_thread_num() ] += myPartialSum;

}

float sum =0
for(inti= 0; i < omp_get_num_threads( ); i++)
sum +=sumsliJ;

delete [ ] sums;

* This seems perfectly reasonable, it works, and it gets rid of the problem of
multiple threads trying to write into the same reduction variable.

» The reason we don’t do this is that this method provokes a problem called
¢ False Sharing. We will get to that when we discuss caching. . .1
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