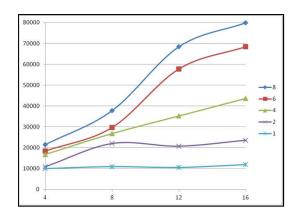

OpenMP Tasks



mjb@cs.oregonstate.edu

This work is licensed under a <u>Creative Commons</u> <u>Attribution-NonCommercial-NoDerivatives 4.0</u> International License

tasks.pptx mjb – March 16, 2022

Remember OpenMP Sections?

Sections are independent blocks of code, able to be assigned to separate threads if they are available.

```
#pragma omp parallel sections
{
    #pragma omp section
    {
        Task 1
    }
    #pragma omp section
    {
        Task 2
    }
}
```

There is an implied barrier at the end

OpenMP sections are *static*, that is, they are good if you know, *when* you are writing the program, how many of them you will need.

It would be nice to have something more Dynamic

Imagine a capability where you can write something to do down on a Post-It® note, accumulate the Post-It notes, then have all of the threads together execute that set of tasks.

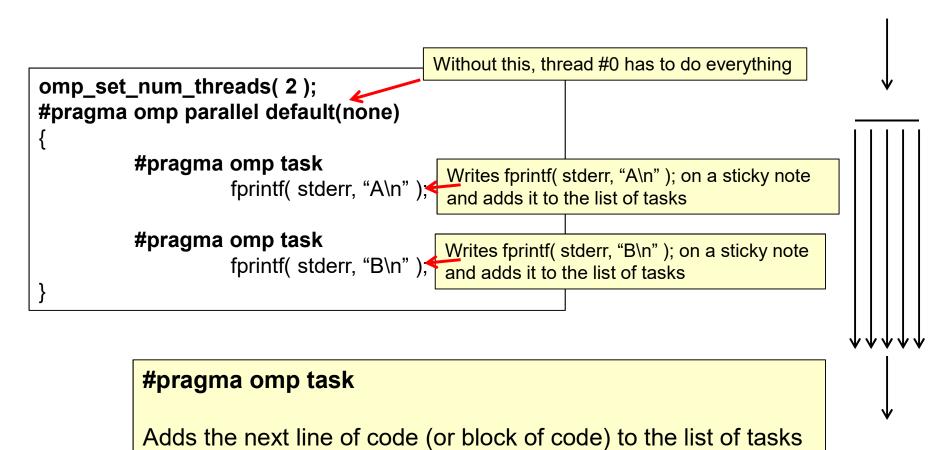
You would also like to not have to know, ahead of time, how many of these Post-It notes you will write. That is, you want the total number to be *dynamic*.

Well, congratulations, you have just invented *OpenMP Tasks*!

University
Computer Graphics

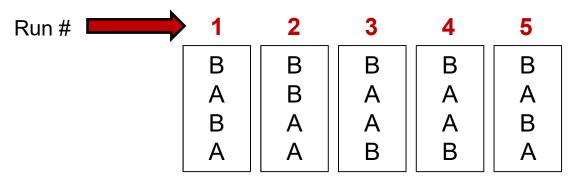
OpenMP Tasks

- An OpenMP task is a single line of code or a structured block which is immediately "written down" in a list of tasks.
- The new task can be executed immediately, or it can be deferred.
- If the *if* clause is used and the argument evaluates to 0, then the task is executed immediately, superseding whatever else that thread is doing.
- There has to be an existing parallel thread team for this to work. Otherwise one thread ends up doing all tasks and you don't get any contribution to parallelism.
- One of the best uses of this is to process elements of a linked list or a tree.


You can create a task barrier with:

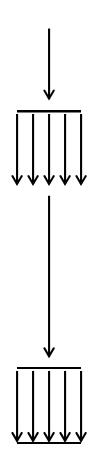
#pragma omp taskwait

Tasks are very much like OpenMP **Sections**, but Sections are static, that is, the number of sections is set when you write the code, whereas **Tasks** can be created anytime, and in any number, under control of your program's logic.



OpenMP Task Example: Something (Supposedly) Simple

If You Run This a Number of Times, You Get This: (Uh-oh, what Happened?)


- 1. Why do we not get the same output every time?
- 2. Why do we get 4 things printed when we only have print statements in 2 tasks?

Not so simple, huh?

The first answer is easy. Unless you make some special arrangements, the order of execution of the different tasks is *undefined*.

The second answer is that we actually asked the two threads to each put two tasks on the sticky notes, for a total of four. How can we get only one thread to do this?

When using Tasks, you only want *one* thread to write the things to do down on the sticky note, but you want *all* of the threads to be able to execute the sticky notes.

But, if you run this, the order of printing will still be non-deterministic. If you care about order, do this:

```
omp_set_num_threads( 2 );
#pragma omp parallel
          #pragma omp single default(none)
                     #pragma omp task
                               fprintf( stderr, "A\n" );
                                                 Causes all tasks to wait until
                     #pragma omp taskwait
                                                 they are completed
                     #pragma omp task
                               fprintf( stderr, "B\n" );
                                                 Causes all tasks to wait until
                     #pragma omp taskwait
                                                 they are completed
Oregon State
  University
Computer Graphics
```

A Better OpenMP Task Example: Processing each Element of a Linked List

```
Without this, thread #0 has to do everything
#pragma omp paralle default(none)
                Without this, each thread does a full traversal – bad idea!
          #pragma omp single default(none)
                     element *p = listHead;
                     while(p!= NULL)
                           Write "Process(p)" on a sticky note and add it to the list
                                #pragma omp task firstprivate(p)
                                           Process(p);
                                               Copies the current value of p into the
                                p = p-next;
                                               task and immediately makes it private
                                                (i.e., not shared)
                                            Put this here if you want to wait for all tasks to finish
          #pragma omp taskwait
                                            being executed before proceeding
```

One more thing – Task Dependencies

Remember from before: unless you make some special arrangements, the order of execution of the different tasks is *undefined*. Here come some special arrangements.

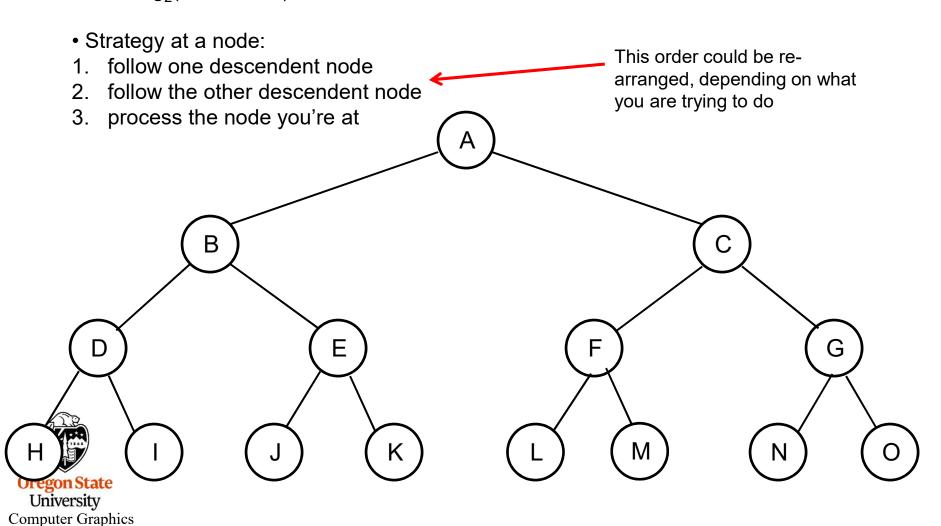
```
omp set num threads(3);
#pragma omp parallel
         #pragma omp single default(none)
                  float a, b, c;
                  #pragma omp task depend OUT: a)
                           a = 10.;
                  #pragma omp task depend( IN: a, DUT: b )
                           b = a + 16.
                  #pragma omp task depend IN: b)
                           c = b + 12.
         #pragma omp taskwait
```

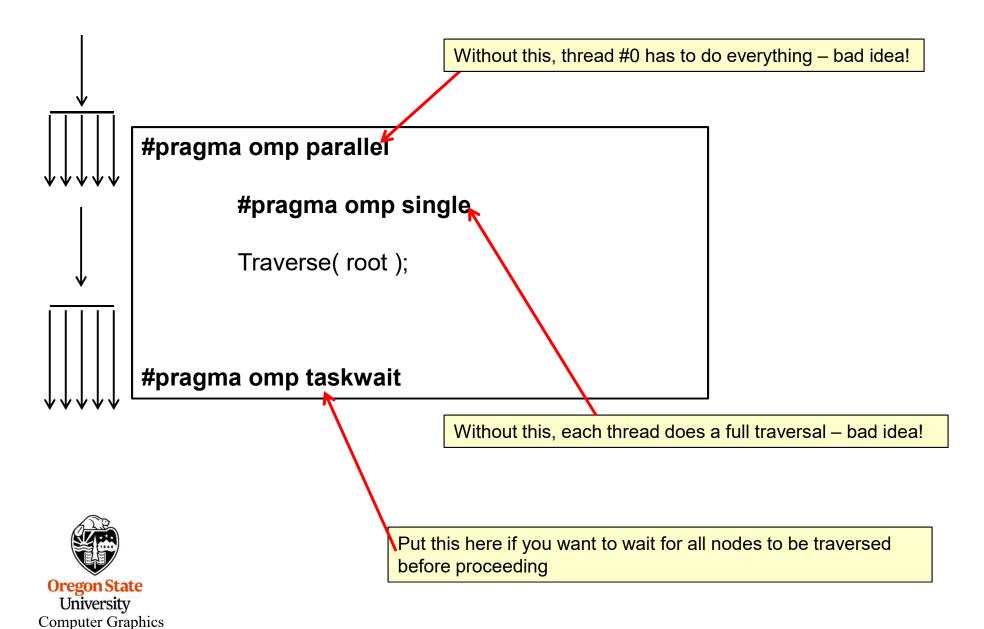
Computer

This maintains the proper dependencies, but, because it involves all of the tasks, it essentially serializes the parallelism out of them.

Be careful not to go overboard with dependencies!

Given a tree:

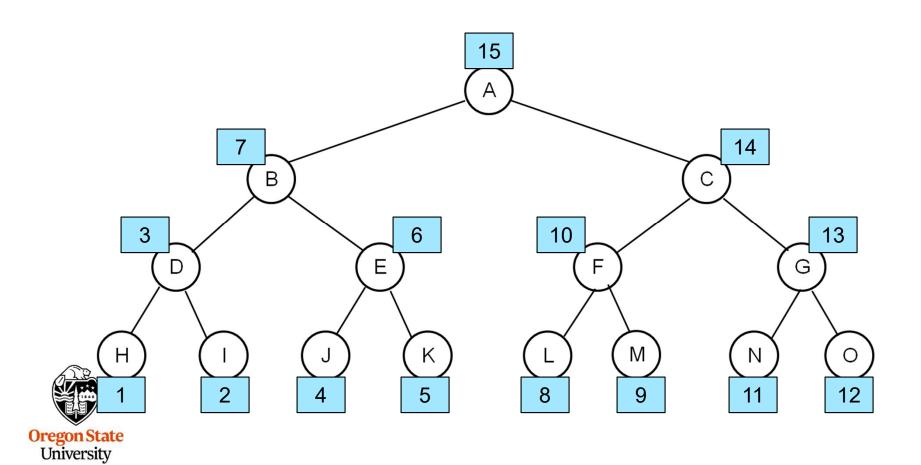



- We would like to traverse it as quickly as possible.
- We are assuming that we do not need to traverse it in order.
- We just need to visit all nodes.

Tree Traversal Algorithms

- This is common in graph algorithms, such as searching.
- If the tree is binary and is balanced, then the maximum depth of the tree is log₂(# of Nodes)

Tree Traversal Algorithms


Parallelizing a Binary Tree Traversal with Tasks

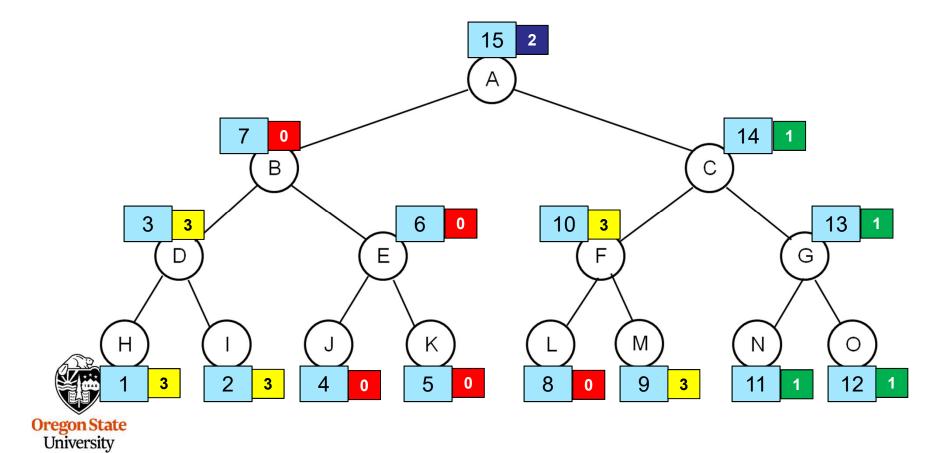

```
void
Traverse( Node *n )
         if( n->left != NULL )
                   #pragma omp task private(n) untied
                   Traverse( n->left );
         if( n->right != NULL )
                   #pragma omp task private(n) untied
                   Traverse( n->right );
                                              Put this here if you want to wait
                                              for both branches to be taken
         #pragma omp taskwait
                                              before processing the parent
         Process(n);
                                                                mjb – March 16, 2022
```



Traverse(A);

Parallelizing a Binary Tree Traversal with Tasks: *Tied*

(g++10.2)


Threads: Traverse(A);

Parallelizing a Binary Tree Traversal with Tasks: *Untied*

(g++10.2)

Threads: Traverse(A);

How Evenly Tasks Get Assigned to Threads g++ vs. icpc

6 Levels – g++ 10.2:

Thread #	Number of Tasks
0	1
1	41
2	42
3	43

6 Levels – icpc 15.0.0:

Thread #	Number of Tasks
0	29
1	31
2	41
3	26

12 Levels – g++ 10.2:

Oregon State
University
Computer Graphics

Thread #	Number of Tasks
0	3071
1	1
2	3071
3	2048

12 Levels – icpc 15.0.0:

Thread #	Number of Tasks
0	1999
1	2068
2	2035
3	2089

How Evenly Tasks Get Assigned to Threads g++ 4.9 vs. g++ 10.2

6 Levels - g + 4.9:

Thread #	Number of Tasks
0	1
1	32
2	47
3	47

6 Levels – g++ 10.2:

Thread #	Number of Tasks
0	1
1	41
2	42
3	43

12 Levels – g++ 4.9:

Oregon State
University
Computer Graphics

Thread #	Number of Tasks
0	2561
1	2
2	2813
3	2815

12 Levels – g++ 10.2:

Thread #	Number of Tasks
0	3071
1	1
2	3071
3	2048

How Evenly Tasks Get Assigned to Threads Tied vs. Untied

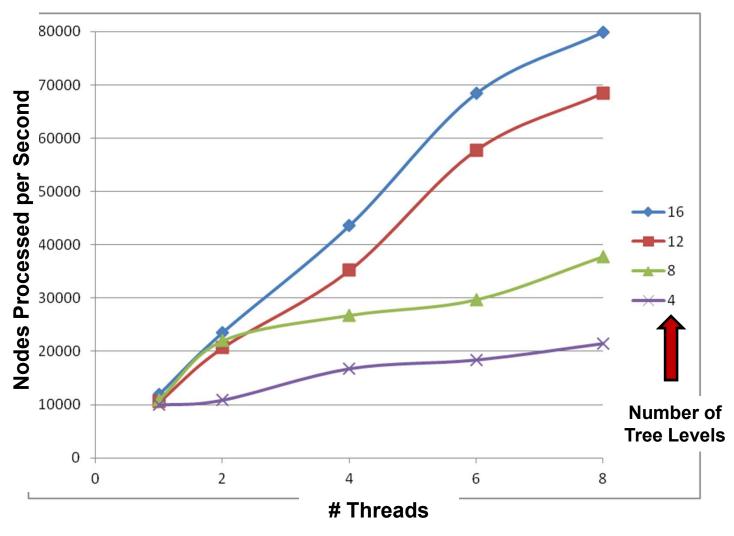
6 Levels – g++ 10.2 -- Tied:

Thread #	Number of Tasks
0	1
1	41
2	42
3	43

6 Levels – g++ 10.2 -- Untied:

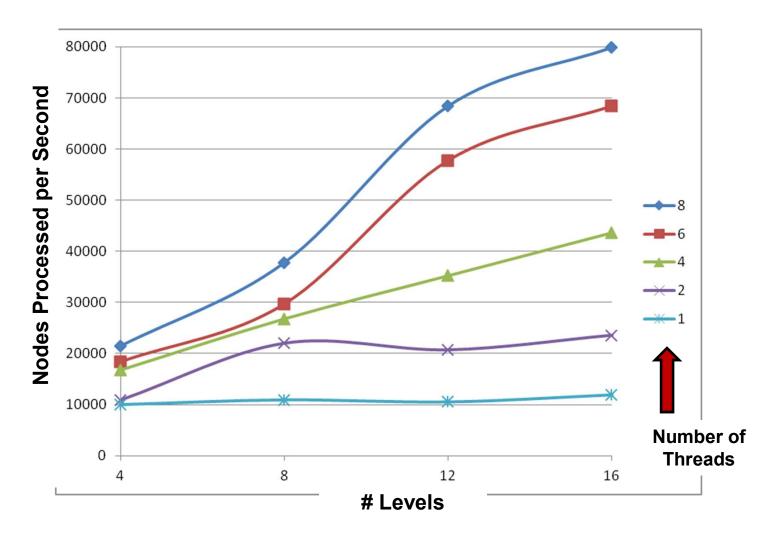
Thread #	Number of Tasks
0	1
1	47
2	32
3	47

12 Levels – g++ 10.2 -- Tied:

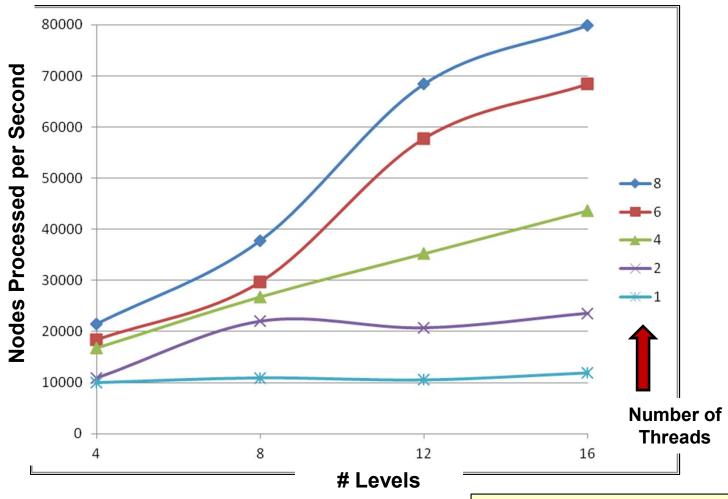

Oregon State
University
Computer Graphics

Thread #	Number of Tasks
0	3071
1	1
2	3071
3	2048

12 Levels – g++ 10.2 -- Untied:


Thread #	Number of Tasks
0	3071
1	1
2	2048
3	3071

Performance vs. Number of Threads



Performance vs. Number of Levels

Performance vs. Number of Levels

8-thread Speed-up ≈ 6.7

 $F_p \approx 97\%$

Max Speed-up ≈ 33x

Parallelizing a Tree Traversal with Tasks: Summary

- Tasks get spread among the current "thread team"
- Tasks can execute immediately or can be deferred. They are executed at "some time".
- Tasks can be moved between threads, that is, if one thread has a backlog of tasks to do, an idle thread can come steal some workload.
- Tasks are more dynamic than sections. The task paradigm would still work if there was a variable number of children at each node.

