
1

mjb – April 26, 2023

1

Computer Graphics

Vector Processing

(aka, Single Instruction Multiple Data, or SIMD)

simd.vector.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – April 26, 2023

2

Computer Graphics

What is Vectorization/SIMD and Why do We Care?

Performance!

Many hardware architectures today, both CPU and GPU, allow you to
perform arithmetic operations on multiple array elements simultaneously.

(Thus the label, “Single Instruction Multiple Data”.)

We care about this because many problems, especially scientific and
engineering, can be cast this way. Examples include convolution, Fourier
transform, power spectrum, autocorrelation, etc.

*

=

Signal

Sine and Cosine values

Fourier products

2

mjb – April 26, 2023

3

Computer Graphics

SIMD in Intel Chips

Year
Released

Name Width
(bits)

Width
(FP words)

1996 MMX 64 2

1999 SSE 128 4

2011 AVX 256 8

2013 AVX-512 512 16

Xeon Phi Note: one complete cache line!
Also note: a 4x4 transformation matrix!

If you care:
• MMX stands for “MultiMedia Extensions”
• SSE stands for “Streaming SIMD Extensions”
• AVX stands for “Advanced Vector Extensions”

mjb – April 26, 2023

4

Computer Graphics

Intel SSE

Intel and AMD CPU architectures support vectorization. The most
well-known form is called Streaming SIMD Extension, or SSE. It
allows four floating point operations to happen simultaneously.

Normally a scalar floating point multiplication instruction happens like this:

mulss r1, r0

r1r0

“ATT form”:
mulss src, dst

*
r0*r1

3

mjb – April 26, 2023

5

Computer Graphics

Intel SSE

The SSE version of the multiplication instruction happens like this:

mulps xmm1, xmm0

xmm0 xmm0xmm0 xmm0 xmm1 xmm1xmm1 xmm1

*

“ATT form”:
mulps src, dst

*
*

*

mjb – April 26, 2023

6

Computer Graphics

mulps xmm1, xmm0mulss r1, r0

SSE in the Kitchen?

4

mjb – April 26, 2023

7

Computer Graphics

SIMD using OpenMP SIMD Pragma

void
SimdMul(float *a, float *b, float *c, int len)
{

#pragma omp simd
for(int i= 0; i < len; i++)

c[i] = a[i] * b[i];
}

Array * Array

void
SimdMul(float *a, float b, float *c, int len)
{

#pragma omp simd
for(int i = 0; i < len; i++)

c[i] = a[i] * b;
}

Array * Scalar

mjb – April 26, 2023

8

Computer Graphics

Array*Array Multiplication Speed

S
pe

ed
 (

M
F

LO
P

S
)

Array Size (M)

5

mjb – April 26, 2023

9

Computer Graphics

Array*Array Multiplication Speedup

Array Size (M)

S
pe

ed
up

 o
f S

IM
D

 o
ve

r
N

on
-S

IM
D

You would think it would always be 4.0 ± noise effects, but it’s not. Why?

mjb – April 26, 2023

10

Computer Graphics

#pragma omp simd
for(int i = 0; i < ArraySize; i++)
{

c[i] = a[i] * b[i];
}

#pragma omp simd

SIMD using OpenMP SIMD Pragma

6

mjb – April 26, 2023

11

Computer Graphics

Requirements for a For-Loop to be Vectorized

• If there are nested loops, the one to vectorize must be the inner one.

• There can be no jumps or branches. “Masked assignments” (an if-statement-
controlled assignment) are OK, e.g.,

if(A[i] > 0.)
B[i] = 1.;

• The total number of iterations must be known at runtime when the loop starts

• There can be no inter-loop data dependencies such as:
a[i] = a[i-1] + 1.;

• It helps performance if the elements have contiguous memory addresses.

a[100] = a[99] + 1.; // this crosses an SSE boundary, so it is ok
a[101] = a[100] + 1.; // this is within one SSE operation, so it is not OK

100th element101st element

101st element102nd element

mjb – April 26, 2023

12

Computer Graphics

Prefetching

Prefetching is used to place a cache line in memory before it is to be used, thus hiding the
latency of fetching from off-chip memory.

There are two key issues here:
1. Issuing the prefetch at the right time
2. Issuing the prefetch at the right distance

The right time:
If the prefetch is issued too late, then the memory values won’t be back when the
program wants to use them, and the processor has to wait anyway.

If the prefetch is issued too early, then there is a chance that the prefetched values could
be evicted from cache by another need before they can be used.

The right distance:
The “prefetch distance” is how far ahead the prefetch memory is than the memory we
are using right now.

Too far, and the values sit in cache for too long, and possibly get evicted.

Too near, and the program is ready for the values before they have arrived.

7

mjb – April 26, 2023

13

Computer Graphics

The Effects of Prefetching on SIMD Computations

for(int i = 0; i < NUM; i += ONETIME)
{

__builtin_prefetch (&A[i+PD], WILL_READ_ONLY, LOCALITY_LOW);
__builtin_prefetch (&B[i+PD], WILL_READ_ONLY, LOCALITY_LOW);
__builtin_prefetch (&C[i+PD], WILL_READ_AND_WRITE, LOCALITY_LOW);

SimdMul(A, B, C, ONETIME);
}

Array Multiplication
Length of Arrays (NUM): 1,000,000
Length per SIMD call (ONETIME): 256

mjb – April 26, 2023

14

Computer Graphics

Array Size (M)

S
pe

ed
 (

M
F

LO
P

S
)

The Effects of Prefetching on SIMD Computations

8

mjb – April 26, 2023

15

Computer Graphics

This all sounds great!
What is the catch?

The catch is that compilers haven’t caught up to producing really efficient
SIMD code. So, while there are great ways to express the desire for SIMD in
code, you won’t get the full potential speedup … yet.

One way to get a better speedup is to use assembly language.
Don’t worry – you wouldn’t need to write it.

Here are two assembly functions:

1. SimdMul: C[0:len] = A[0:len] * B[0:len]

2. SimdMulSum: return (ΣA[0:len] * B[0:len])

Warning – due to the nature of how different compilers and systems
handle local variables, these two functions only work on flip using

gcc/g++, without –O3 !!!

mjb – April 26, 2023

16

Computer Graphics

void
SimdMul(float *a, float *b, float *c, int len)
{

int limit = (len/SSE_WIDTH) * SSE_WIDTH;
__asm
(

".att_syntax\n\t"
"movq -24(%rbp), %r8\n\t" // a
"movq -32(%rbp), %rcx\n\t" // b
"movq -40(%rbp), %rdx\n\t" // c

);

for(int i = 0; i < limit; i += SSE_WIDTH)
{

__asm
(

".att_syntax\n\t"
"movups (%r8), %xmm0\n\t" // load the first sse register
"movups (%rcx), %xmm1\n\t" // load the second sse register
"mulps %xmm1, %xmm0\n\t" // do the multiply
"movups %xmm0, (%rdx)\n\t" // store the result
"addq $16, %r8\n\t"
"addq $16, %rcx\n\t"
"addq $16, %rdx\n\t"

);
}

for(int i = limit; i < len; i++)
{

c[i] = a[i] * b[i];
}

}

Getting at the full SIMD power until compilers catch up

This only works on flip using gcc/g++,
without –O3 !!!

9

mjb – April 26, 2023

17

Computer Graphics

Getting at the full SIMD power until compilers catch up
float
SimdMulSum(float *a, float *b, int len)
{

float sum[4] = { 0., 0., 0., 0. };
int limit = (len/SSE_WIDTH) * SSE_WIDTH;

__asm
(

".att_syntax\n\t"
"movq -40(%rbp), %r8\n\t" // a
"movq -48(%rbp), %rcx\n\t" // b
"leaq -32(%rbp), %rdx\n\t" // &sum[0]
"movups (%rdx), %xmm2\n\t" // 4 copies of 0. in xmm2

);

for(int i = 0; i < limit; i += SSE_WIDTH)
{

__asm
(

".att_syntax\n\t"
"movups (%r8), %xmm0\n\t" // load the first sse register
"movups (%rcx), %xmm1\n\t" // load the second sse register
"mulps %xmm1, %xmm0\n\t" // do the multiply
"addps %xmm0, %xmm2\n\t" // do the add
"addq $16, %r8\n\t"
"addq $16, %rcx\n\t"

);
}

__asm
(

".att_syntax\n\t"
"movups %xmm2, (%rdx)\n\t" // copy the sums back to sum[]

);

for(int i = limit; i < len; i++)
{

sum[0] += a[i] * b[i];
}

return sum[0] + sum[1] + sum[2] + sum[3];
}

This only works on flip using gcc/g++,
without –O3 !!!

mjb – April 26, 2023

18

Computer Graphics

#define NUM_ELEMENTS_PER_CORE (ARRAYSIZE / NUMT)

. . .

omp_set_num_threads(NUMT);
double maxMegaMultsPerSecond = 0.;

double time0 = omp_get_wtime();
#pragma omp parallel
{

int thisThread = omp_get_thread_num();
int first = thisThread * NUM_ELEMENTS_PER_CORE;
SimdMul(&A[first], &B[first], &C[first], NUM_ELEMENTS_PER_CORE);

}
double time1 = omp_get_wtime();
double megaMultsPerSecond = (double)ARRAYSIZE / (time1 - time0) / 1000000.;
. . .

Each Core Has Its Own SIMD Unit!
Thus, You Should be able to Combine Multicore and SIMD

The variable first is the first array element that thisThread is
in charge of.

&A[first] is the memory address of that thread's first element.

10

mjb – April 26, 2023

19

Computer Graphics

Notes:

• Remember that #pragma omp parallel creates a thread team and that all
threads execute everything in the curly braces.

• The variable thisThread is the thread number of the thread who is executing this
code right now. There will eventually be NUMT threads who get to execute this
code. Thus, all the instances of thisThread will be between 0 and NUMT-1 .

• The variable first is the first array element number that thisThread will execute.

• Starting the SIMD multiplications at &A[first], &B[first], &C[first] gives each
thread its very own set of contiguous array elements to work on. The SimdMul
function depends on this.

Combining SIMD with Multicore

mjb – April 26, 2023

20

Computer Graphics

Array Size

S
pe

ed
U

p

1 core alone

2 cores alone

4 cores alone

• Speedups are with respect to a for-loop with no multicore or SIMD.
• “cores alone” = a for-loop with “#pragma omp parallel for”.
• “cores + SIMD” = as the code looks on last two slides

2x

4x

16x

8x

1x

Combining SIMD with Multicore

11

mjb – April 26, 2023

21

Computer Graphics

Avoiding Assembly Language: the Intel Intrinsics

Intrinsic Meaning

__m128 Declaration for a 128 bit 4-float word

_mm_loadu_ps Load a __m128 word from memory

_mm_storeu_ps Store a __m128 word into memory

_mm_mul_ps Multiply two __m128 words

_mm_add_ps Add two __m128 words

Intel has a mechanism to get at the SSE SIMD without resorting to
assembly language. These are called Intrinsics.

mjb – April 26, 2023

22

Computer Graphics

SimdMul using Intel Intrinsics

#include <xmmintrin.h>
#define SSE_WIDTH 4

void
SimdMul(float *a, float *b, float *c, int len)
{

int limit = (len/SSE_WIDTH) * SSE_WIDTH;
register float *pa = a;
register float *pb = b;
register float *pc = c;
for(int i = 0; i < limit; i += SSE_WIDTH)
{

_mm_storeu_ps(pc, _mm_mul_ps(_mm_loadu_ps(pa), _mm_loadu_ps(pb)));
pa += SSE_WIDTH;
pb += SSE_WIDTH;
pc += SSE_WIDTH;

}

for(int i = limit; i < len; i++)
{

c[i] = a[i] * b[i];
}

}

12

mjb – April 26, 2023

23

Computer Graphics

SimdMulSum using Intel Intrinsics

float
SimdMulSum(float *a, float *b, int len)
{

float sum[4] = { 0., 0., 0., 0. };
int limit = (len/SSE_WIDTH) * SSE_WIDTH;
register float *pa = a;
register float *pb = b;

__m128 ss = _mm_loadu_ps(&sum[0]);
for(int i = 0; i < limit; i += SSE_WIDTH)
{

ss = _mm_add_ps(ss, _mm_mul_ps(_mm_loadu_ps(pa), _mm_loadu_ps(pb)));
pa += SSE_WIDTH;
pb += SSE_WIDTH;

}
_mm_storeu_ps(&sum[0], ss);

for(int i = limit; i < len; i++)
{

sum[0] += a[i] * b[i];
}

return sum[0] + sum[1] + sum[2] + sum[3];
}

mjb – April 26, 2023

24

Computer Graphics

Intel Intrinsics

Array Size

S
pe

ed
U

p

13

mjb – April 26, 2023

25

Computer Graphics

Why do the Intrinsics do so well with a small dataset size?

movups (%r8), %xmm0
movups (%rcx), %xmm1
mulps %xmm1, %xmm0
movups %xmm0, (%rdx)
addq $16, %r8
addq $16, %rcx
addq $16, %rdx
addl $4, -4(%rbp)

movups (%r10), %xmm0
movups (%r9), %xmm1
mulps %xmm1, %xmm0
movups %xmm0, (%r11)
addq $16, %r9
addq $16, %r10
addq $16, %r11
addl $4, %r8d

for(int i = 0; i < len; i++)
{

c[i] = a[i] * b[i];
}

Assembly IntrinsicsC/C++

It’s not due to the code in the inner-loop:

It’s actually due to the setup time. The intrinsics have a tighter coupling to the setting up of
the registers. A smaller setup time makes the small dataset size speedup look better.

mjb – April 26, 2023

26

Computer Graphics

float4 pp = p + v*DT + .5*DT*DT*G; // p’

float4 pp; // p’
pp.x = p.x + v.x*DT;
pp.y = p .y + v.y*DT + .5*DT*DT*G.y;
pp.z = p.z + v.z*DT;

When we get to OpenCL, we could compute projectile physics like this:

But, instead, we will do it like this:

We do it this way for two reasons:
1. Convenience and clean coding
2. Some hardware can do multiple arithmetic operations simultaneously

A preview of things to come:
OpenCL and CUDA have SIMD Data Types

14

mjb – April 26, 2023

27

Computer Graphics

constant float4 G = (float4) (0., -9.8, 0., 0.);
constant float DT = 0.1;

kernel
void
Particle(global float4 * dPobj, global float4 * dVel, global float4 * dCobj)
{

int gid = get_global_id(0); // particle #
float4 p = dPobj[gid]; // particle #gid’s position
float4 v = dVel[gid]; // particle #gid’s velocity

float4 pp = p + v*DT + .5*DT*DT*G; // p’
float4 vp = v + G*DT; // v’

dPobj[gid] = pp;
dVel[gid] = vp;

}

The whole thing will look like this:

A preview of things to come:
OpenCL and CUDA have SIMD Data Types

mjb – April 26, 2023

28

Computer Graphics

• SIMD is an important way to achieve speed-ups on a CPU

• For now, you might have to write in assembly language or use Intel
intrinsics to get to all of it

• I suspect that #pragma omp simd will eventually catch up

• Prefetching can really help SIMD

