
1

mjb – March 9, 2023

1

Computer Graphics

Scripting
You can either run the programs and gather the data in 2 minutes or 2 hours … you can pick

scripting.pptx

Mike Bailey

mjb@cs.oregonstate.edu

mjb – March 9, 2023

2

Computer Graphics

Why Are These Notes Here?

In this class, you are required to run your programs many times to observe the
effect of different parameters on performance.

You could run those many versions one-at-a-time, but this could take hours.
Or, you could write scripts that run all those parameter combinations in a
couple of minutes.

So, if you are the kind of person who has loads of free time on their hands and
has nothing else they want to do, feel free to use the slow one-at-a-time
approach.

If you are not one of those, take a little time to learn how to do it via scripts.

mjb – March 9, 2023

3

Computer Graphics

Setting up Your Benchmarks to run from Scripts:
#1 -- the #define Approach

There are always advantages to not hardcoding constants into the middle of your program
and, instead, setting them with a #define at the top where you can find that value and
change it easily, like this:

#include <stdio.h>
#include <math.h>

#ifndef NUMT
#define NUMT 2
#endif

#ifndef NUMS
#define NUMS 32
#endif

Then, in the C or C++ program, all you have to do is use NUMT to, for example, set the
number of threads, like this:

omp_set_num_threads(NUMT);

But, the use of the #ifndef/#endif construct has other advantages. It lets you either run
this as a standalone program or run many occurrences of the program from a script.

mjb – March 9, 2023

4

Computer Graphics

In our project assignments, you will run benchmarks, that is, you will try your application using several
different combinations of parameters. Setting these combinations by hand inside your program one-
at-a-time is a time-consuming pain. Your time is more valuable than that. Try doing it from a script.

In most C and C++ compilers, there is some mechanism to set a #define from outside the program.
Most (all?) of them use the -D construct on the command line. So, we could create a file called
script.bash that looks like this::

#!/bin/bash

#number of threads:
for t in 1 2 4 6 8
do

echo NUMT = $t
g++ -DNUMT=$t prog.cpp -o prog -lm -fopenmp
./prog

done

Then, in the C or C++ program, all you have to do is use NUMT. For example:

omp_set_num_threads(NUMT);

This lets you automatically run your program 5 times with 1, 2, 4, 6, and 8 threads.

To run this script, type: bash script.bash

Setting up Your Benchmarks to run from Scripts:
#1 -- the #define Approach

2

mjb – March 9, 2023

5

Computer Graphics

You can also test multiple parameters from the same script by nesting the loops. This one
is done using Bash Shell (bash):

#!/bin/bash

number of threads:
for t in 1 2 4 6 8
do

echo NUMT = $t
number of subdivisions:
for s in 2 4 8 16 32 64 128 256 512 1024 2048 3072 4096
do

echo NUMS = $s
g++ -DNUMS=$s -DNUMT=$t prog.cpp -o prog -lm -fopenmp
./prog

done
done

Setting up Your Benchmarks to run from Scripts:
Method #1 -- the #define Approach

http://teespring.com
mjb – March 9, 2023

6

Computer Graphics

#!/bin/csh

number of threads:
foreach t (1 2 4 6 8)

echo NUMT = $t
number of subdivisions:
foreach s (2 4 8 16 32 64 128 256 512 1024 2048 3072 4096)

echo NUMS = $s
g++ -DNUMS=$s -DNUMT=$t prog.cpp -o prog -lm -fopenmp
./prog

end
end

Or, in C Shell (csh)…

To run this script, type: csh script.csh

mjb – March 9, 2023

7

Computer Graphics

Or, in Python…

import os

for t in [1, 2, 4, 6, 8]:
print "NUMT = %d" % t
for s in [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 3072, 4096]:

print "NUMS = %d" % s
cmd = "g++ -DNUMS=%d -DNUMT=%d prog.cpp -o prog -lm -fopenmp % (s, t) "
os.system(cmd)
cmd = "./prog"
os.system(cmd)

To run this script, type: python script.py

mjb – March 9, 2023

8

Computer Graphics

Setting up Your Benchmarks to run from Scripts:
Method #2 -- the Command Line Arguments Approach

Instead of doing this:

#include <stdio.h>
#include <math.h>

#ifndef NUMT
#define NUMT 8
#endif

#ifndef NUMS
#define NUMS 32
#endif

Then, in the C or C++ program, all you have to do is use NUMT to set the number of threads like
you did before, like this:

omp_set_num_threads(NUMT);

Do this:

#include <stdio.h>
#include <math.h>

int NUMT = 8;

int NUMS = 32

3

mjb – March 9, 2023

9

Computer Graphics

Now let's use argc and argv

When you write in C or C++, your main program, which is really a special function call, looks
like this:

int main(int argc, char *argv[])
{

. . .

These arguments describe what was entered on the command line used to run the program.

The argc is the number of arguments (the arg count)

The argv is a list of argc character strings that were typed (the arg vector).
The name of the program counts as the 0th argv (i.e., argv[0])

So, for example, when you type
ls –l

in a shell, the ls program sees argc and argv filled like this:
argc = 2
argv[0] = “ls”
argv[1] = “-l”

mjb – March 9, 2023

10

Computer Graphics

argc and argv

So, if NUMT and NUMS are global int variables:

int NUMT = 2;
int NUMS = 32;

and you want to set them to something else from the command line, like this:

./prog 1 64

Then, inside your main program, you would say this:
if(argc >= 2)

NUMT = atoi(argv[1]);

if(argc >= 3)
NUMS = atoi(argv[2]);

The if-statements guarantee that nothing bad happens if you forget to type
values on the command line.

The atoi function converts a string into an integer (“ascii-to-integer”).
If you ever need it, there is also an atof function for floating-point.

mjb – March 9, 2023

11

Computer Graphics

shared() in the #pragma omp Line

Also remember, if you use Method #2, then NUMS is a variable, and it needs to be declared as
shared in the #pragma omp line:

#pragma omp parallel for default(none) shared(NUMS,xcs,ycs,rs,tn) reduction(+:numHits)

NUMT does not need to be declared in this way because it is not used in the for-loop that has
the #pragma omp in front of it.

mjb – March 9, 2023

12

Computer Graphics

In our project assignments, you will run benchmarks, that is, you will try your application
using several different combinations of parameters. Setting these combinations by hand
inside your program one-by-one is a time-consuming pain.
Your time is more valuable than that. Try doing it from a script.

#!/bin/bash

g++ prog.cpp -o prog -lm –fopenmp

#number of threads:
for t in 1 2 4 6 8
do

echo NUMT = $t
./prog $t

done

Then, in the C or C++ program, all you have to do is use NUMT. For example:

omp_set_num_threads(NUMT);

This lets you automatically run your program 5 times with 1, 2, 4, 6, and 8 threads.

To run this script, type: bash script.bash

Setting up Your Benchmarks to run from Scripts:
Method #2 -- the Command Line Arguments Approach

4

mjb – March 9, 2023

13

Computer Graphics

You can also test multiple parameters from the same script by nesting the loops. This one
is done using Bash Shell (bash):

#!/bin/bash

g++ prog.cpp -o prog -lm -fopenmp

number of threads:
for t in 1 2 4 6 8
do

echo NUMT = $t
number of subdivisions:
for s in 2 4 8 16 32 64 128 256 512 1024 2048 3072 4096
do

echo NUMS = $s
./prog $t $s

done
done

Setting up Your Benchmarks to run from Scripts:
#2 -- the Command Line Arguments Approach

http://teespring.com

To run this script, type: bash script.bash

mjb – March 9, 2023

14

Computer Graphics

#!/bin/csh

g++ prog.cpp -o prog -lm -fopenmp

number of threads:
foreach t (1 2 4 6 8)

echo NUMT = $t
number of subdivisions:
foreach s (2 4 8 16 32 64 128 256 512 1024 2048 3072 4096)

echo NUMS = $s
./prog $t $s

end
end

Or, in csh (C Shell) …

To run this script, type: csh script.csh

mjb – March 9, 2023

15

Computer Graphics

Or, in Python…

import os

cmd = "g++ prog.cpp -o prog -lm -fopenmp"
os.system(cmd)

for t in [1, 2, 4, 6, 8]:
print "NUMT = %d" % t
for s in [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 3072, 4096]:

print "NUMS = %d" % s
cmd = "./prog %d %d" % (s, t)

os.system(cmd)

To run this script, type: python script.py

mjb – March 9, 2023

16

Computer Graphics

Do Not Put These Loops in the .cpp Program!

I know what you’re thinking.

You’re thinking:
"Those scripts are different, and I’ve never done them before, and I don't
want to take the 5 minutes to learn them. So, I’ll just build the iterations
through all the parameters into for-loops in the program."

Don’t!

I see evidence that the first time OpenMP does anything, it also does some
one-time setups. This will mess up your timing because your first test will
seem slower than it should be and the others will seem artificially faster by
comparison.

I recommend you run the program separately for each combination of
parameters. (The script code in the previous pages shows that.)

5

mjb – March 9, 2023

17

Computer Graphics

Diverting to a File

We all have a tendency to want to write our performance results out using printf (or cout)
so that we can see them on the screen. That’s fine. But, then we want to get those results
into a file. You could mess with file I/O, or you could use a divert on the command line.

If you are currently running your program like this:

./proj01

and it prints to the standard output screen via printf or cout, then running it like this:

./proj01 > output.csv

will write your results into the file output.csv

(If you do it a second time, you will probably have to remove the previous output.csv first.)

You can also divert the entire output (standard out and standard error) of a looping script:

bash script.bash >& output

mjb – March 9, 2023

18

Computer Graphics

Importing into Excel – csv Files

csv stands for comma-separated values. It is a file format where you write your numbers out
as text with commas between them. The great part is that Excel recognizes csv files and will
read them in automatically.

Say you are using a printf that looks like this:

printf("%2d threads ; %8d trials ; probability = %6.2f%% ; megatrials/sec = %6.2lf\n",
NUMT, NUMTRIALS, 100.*currentProb, maxPerformance);

You probably did this because it looks really nice on your screen as you use this output to debug
your program. But, now you want to change it to get the numbers into Excel quickly and
painlessly. Comment out the old way and change it to this:

//printf("%2d threads ; %8d trials ; probability = %6.2f%% ; megatrials/sec = %6.2lf\n",
//NUMT, NUMTRIALS, 100.*currentProb, maxPerformance);

printf("%2d, %8d, %6.2lf\n", NUMT, NUMTRIALS, maxPerformance);

This will now be printing just what you need in CSV format. You can divert it like this:

./proj01 > OUT.csv
or

bash script.bash > OUT.csv

Which would then let you read the OUT.csv file right into Excel.

mjb – March 9, 2023

19

Computer Graphics

Importing into Excel – csv Files

mjb – March 9, 2023

20

Computer Graphics

Some of you will end up having strange, unexplainable problems with your csh scripts or
.cpp prograns. This could be because you are typing your code in on Windows (using
Notepad or Wordpad or Word) and then running it on Linux. Windows likes to insert an
extra carriage return ('\r') at the end of each line, which Linux interprets as a garbage
character.

You can confirm this by typing the Linux command:

od -c loop.csh
which will show you all the characters, even the '\r' (carriage returns, which you don't want)
and the '\n' (newlines, which you do want).

To get rid of the carriage returns, enter the Linux command:

tr -d '\r' < loop.csh > loop1.csh
Then run loop1.csh

This works too:

sed -i -e 's/\r$//' loop.csh

Or, on some systems, there is a utility called dos2unix which does this for you:

dos2unix < loop.csh > loop1.csh

Sorry about this. Unfortunately, this is a fact of life when you mix Windows and Linux.

A Warning about Editing on Windows and Running on Linux

