
1

mjb – March 22, 2021

1

Computer Graphics

Parallel Programming:
Background Information and Tips

parallel.background.pptx

Mike Bailey

mjb@cs.oregonstate.edu

mjb – March 22, 2021

2

Computer Graphics

Three Reasons to Study Parallel Programming

1. Increase performance: do more work in the same amount of time

2. Increase performance: take less time to do the same amount of work

3. Make some programming tasks more convenient to implement

Example:
Decrease the time to compute
a simulation Example:

Create a web browser where the tasks of
monitoring the user interface,
downloading text, and downloading
multiple images are happening
simultaneously

Example:
Increase the resolution, and thus the
accuracy, of a simulation

mjb – March 22, 2021

3

Computer Graphics

Three Types of Parallelism:
1. Instruction Level Parallelism (ILP)

A program might consist of a continuous stream of assembly instructions, but it is not
necessarily executed continuously. Oftentimes it has “pauses”, waiting for something to
be ready so that it can proceed.

A = B + 1;
C = 3;

Load B,r0
Add $1,r0
Store r0,A
Load $3,r1
Store r1,C

Prefetch B
Load $3,r1
Store r1,C
Load B,r0
Add $1,r0
Store r0,A

If B is not already in cache, this
instruction will block while B is
fetched from memory

Out-of-order execution
capability will slide
instructions up if they can
be executed while waiting
for the block to end

If a compiler does this, it’s called Static ILP
If the CPU chip does this, it’s called Dynamic ILP

This is all good to know, but it’s nothing we can control much of.

mjb – March 22, 2021

4

Computer Graphics

Executing the same instructions on different parts of the data

for(i = 0; i < NUM; i++)
{

B[i] = sqrt(A[i]);
}

for(i = 0; i < NUM/3; i++)
{

B[i] = sqrt(A[i]);
}

for(i = NUM/3; i < 2*NUM/3; i++)
{

B[i] = sqrt(A[i]);
}

for(i = 2*NUM/3; i < NUM; i++)
{

B[i] = sqrt(A[i]);
}

Three Types of Parallelism:
2. Data Level Parallelism (DLP)

1 2

3 4

2

mjb – March 22, 2021

5

Computer Graphics

Executing different instructions

Example: processing a variety of incoming transaction requests

thread

thread

thread

In general, TLP implies that you have more threads than cores

Thread execution switches when a thread blocks or uses up its time slice

Three Types of Parallelism:
3. Thread Level Parallelism (TLP)

Different Tasks/Functions

mjb – March 22, 2021

6

Computer Graphics

Flynn’s Taxonomy

SISD

MISD

SIMD

MIMD

Data

In
st

ru
ct

io
ns

Instruction, Data
Single

Multiple

 
 
 

Single

Multiple

 
 
 

“Normal” single-
core CPU

GPUs,
Special vector CPU

instructions

Multiple processors
running

independently

?????

mjb – March 22, 2021

7

Computer Graphics

Memory

Control
Unit

Arithmetic
Logic
Unit

Accumulator

Other elements:
• Clock
• Registers
• Program Counter
• Stack Pointer

Von Neumann Architecture:
Basically the fundamental pieces of a CPU

have not changed since the 1960s

}
These together are the “state”
of the processor

The “Heap” (the result of a
malloc or new call), is in here,
along with Globals and the Stack

mjb – March 22, 2021

8

Computer Graphics

What Exactly is a Process?

Processes execute a program in memory. The process keeps a state (program
counter, registers, and stack).

Program and Data in
Memory

(the heap is here too)

Registers

Program Counter

Stack Pointer

Other elements:
• Clock
• Registers
• Program Counter
• Stack Pointer

5 6

7 8

3

mjb – March 22, 2021

9

Computer Graphics

Other elements:
• Clock
• Registers
• Program Counter
• Stack Pointer

Von Neumann Architecture:
Basically the fundamental pieces of a CPU

have not changed since the 1960s

}
What if we include more than
one set of these?

The “Heap” (the result of a
malloc or new call), is in here,
along with Globals and the Stack

mjb – March 22, 2021

10

Computer Graphics

What Exactly is a Thread?

Threads are separate independent processes, all executing a common
program and sharing memory. Each thread has its own state (program
counter, registers, and stack pointer).

Program and Data in
Shared Memory

(the heap is shared too)

Registers

Program Counter

Stack Pointer
• • •

Thread Thread Thread

Registers

Program Counter

Stack Pointer

Registers

Program Counter

Stack Pointer

mjb – March 22, 2021

11

Computer Graphics

Memory Allocation in a Multithreaded Program

One-thread Multiple-threads

Stack

Program
Executable

Globals

Heap

Stack

Stack

Common
Program

Executable

Common
Globals

Common
Heap

Don’t take this completely
literally. The exact
arrangement depends on the
operating system and the
compiler. For example,
sometimes the stack and heap
are arranged so that they grow
towards each other.

mjb – March 22, 2021

12

Computer Graphics

What Exactly is a Thread?

Threads can share time on a single processor. You don’t have to have
multiple processors (although you can – the multicore topic is coming soon!).

This is useful, for example, in a web browser when you want several things to
happen autonomously:

• User interface
• Communication with an external web server
• Web page display
• Image loading
• Animation

A “thread” is an independent path through the program code. Each thread has its own
Program Counter, Registers, and Stack Pointer. But, since each thread is executing some
part of the same program, each thread has access to the same global data in memory. Each
thread is scheduled and swapped just like any other process.

9 10

11 12

4

mjb – March 22, 2021

13

Computer Graphics

When is it Good to use Multithreading?

• Where specific operations can become blocked, waiting for something else to happen

• Where specific operations can be CPU-intensive

• Where specific operations must respond to asynchronous I/O, including the user interface (UI)

• Where specific operations have higher or lower priority than other operations

• To manage independent behaviors in interactive simulations

• When you want to accelerate a single program on multicore CPU chips

Threads can make it easier to have many things going on in your
program at one time, and can absorb the dead-time of other threads.

mjb – March 22, 2021

14

Computer Graphics

Two Ways to Decompose your Problem into Parallelizable Pieces

Domain (or Data) Decomposition

Breaking a task into sub-tasks that represent separate functions.
A web browser is a good example. So is a climate modeling program:

Land

Ocean

Air

Breaking a task into sub-tasks that represent separate sections of the data. An
example is a large diagonally-dominant matrix solution:

Functional (or Task) Decomposition

“Thread Parallel”

“Data Parallel”

mjb – March 22, 2021

15

Computer Graphics

Data Decomposition Reduces the Problem Size per Thread

• Break the problem into blocks
• Solve within the block
• Handle borders separately after a Barrier

     * 

     * 

     * 
Barrier

Share results across boundaries

?

?

?

Example: A diagonally-dominant
matrix solution

?

?

?

mjb – March 22, 2021

16

Computer Graphics

Some Definitions
Atomic An operation that takes place to completion with no chance of being
interrupted by another thread

Barrier A point in the program where all threads must reach before any of them
are allowed to proceed

Coarse-grained parallelism Breaking a task up into a small number of large
tasks

Deterministic The same set of inputs always gives the same outputs

Dynamic scheduling Dividing the total number of tasks T up so that each of N
available threads has less than T/N sub-tasks to do, and then doling out the
remaining tasks to threads as they become available

Fine-grained parallelism Breaking a task up into lots of small tasks

Fork-join An operation where multiple threads are created from a main
thread. All of those forked threads are expected to eventually finish and thus
“join back up” with the main thread.

Fork Fork Join Join

13 14

15 16

5

mjb – March 22, 2021

17

Computer Graphics

Some More Definitions

Private variable After a fork operation, a variable which has a private copy within
each thread

Reduction Combining the results from multiple threads into a single sum or
product, continuing to use multithreading. Typically this is performed so that it takes
O(log2N) time instead of O(N) time:

Shared variable After a fork operation, a variable which is shared among threads,
i.e., has a single value

Speed-up(N) T1 / TN

Speed-up Efficiency Speed-up(N) / N

Static Scheduling Dividing the total number of tasks T up so that each of N
available threads has T/N sub-tasks to do

mjb – March 22, 2021

18

Computer Graphics

Parallel Programming Tips

mjb – March 22, 2021

19

Computer Graphics

If you do keep internal state between calls, there is a chance that a second thread
will hop in and change it, then the first thread will use that state thinking it has not
been changed.

Ironically, some of the standard C functions that we use all the time
(e.g., strtok) keep internal state:

char * strtok (char * str, const char * delims);

Tip #1 -- Don’t Keep Internal State

int
GetLastPositiveNumber(int x)
{

static int savedX;

if(x >= 0)
savedX = x;

return savedX;
}

Internal state

mjb – March 22, 2021

20

Computer Graphics

char * tok1 = strtok(Line1, DELIMS);

while(tok1 != NULL)
{

. . .
tok1 = strtok(NULL, DELIMS);

};

char * tok2 = strtok(Line2, DELIMS);

while(tok2 != NULL)
{

. . .
tok2 = strtok(NULL, DELIMS);

};

Thread #1
Thread #2

1. Thread #1 sets the internal character array pointer to somewhere in Line1[].

2. Thread #2 resets the same internal character array pointer to somewhere in Line2[].

3. Thread #1 uses that internal character array pointer, but it is not pointing into Line1[]
where Thread #1 thinks it left it.

1
2

3

Tip #1 -- Don’t Keep Internal State

17 18

19 20

6

mjb – March 22, 2021

21

Computer Graphics

Moral: if you will be multithreading, don’t use internal static variables to retain state inside of
functions.

In this case, using strtok_r is preferred:

char * strtok_r(char *str, const char *delims, char **sret);

strtok_r returns its internal state to you so that you can store it locally and then can pass it
back when you are ready. (The ‘r’ stands for “re-entrant”.)

Tip #1 -- Keep External State Instead

mjb – March 22, 2021

22

Computer Graphics

char *retValue1;
char * tok1 = strtok_r(Line1, DELIMS, &retValue1);

while(tok1 != NULL)
{

. . .
tok1 = strtok(NULL, DELIMS, &retValue1);

};

char *retValue2;
char * tok2 = strtok(Line2, DELIMS, &retValue2);

while(tok2 != NULL)
{

. . .
tok2 = strtok(NULL, DELIMS, &retValue2);

};

Thread #1
Thread #2

Execution order no longer matters!

Tip #1 -- Keep External State Instead

mjb – March 22, 2021

23

Computer Graphics

Tip #1 – Note that Keeping Global State is Just as Dangerous

Internal state:

int
GetLastPositiveNumber(int x)
{

static int savedX;

if(x >= 0)
savedX = x;

return savedX;
}

int savedX;

int
GetLastPositiveNumber(int x)
{

if(x >= 0)
savedX = x;

return savedX;
}

Global state:

mjb – March 22, 2021

24

Computer Graphics

Deadlock is when two threads are each waiting for the other to do something

Worst of all, the way these problems occur is not always deterministic!

Tip #2 – Avoid Deadlock

21 22

23 24

7

mjb – March 22, 2021

25

Computer Graphics

• A Race Condition is where it matters which thread gets to a particular piece of code first.

• This often comes about when one thread is modifying a variable while the other thread is
in the midst of using it

A good example is maintaining and using
the pointer in a stack data structure:

Thread #1:
Pushing:

p++ ;
*p = incoming ;

p++ Thread #2:
Popping:

outgoing = *p ;
p- - ;

p

3

4

1

2

Execution
order:

Worst of all, the way these problems occur is not always deterministic!

Tip #3 – Avoid Race Conditions

mjb – March 22, 2021

26

Computer Graphics

BTW, Race Conditions can often be fixed through the use of
Mutual Exclusion Locks (Mutexes)

Thread #1: Pushing:

. . .
MutexLock A
{

p++ ;
*p = incoming ;

}
. . .

p++ Thread #2: Popping:

. . .
MutexLock A
{

outgoing = *p ;
p- - ;

}
. . .

p

4

2

1

3

Execution order:

We will talk about these in a little while.
But, note that, while solving a race condition, we can accidentally create a deadlock condition
if the thread that owns the lock is waiting for the other thread to do something

Mutex Locks are usually
named somehow so that
you can have multiple
ones with no ambiguity.

mjb – March 22, 2021

27

Computer Graphics

Tip #4 -- Sending a Message to the Optimizer:
The volatile Keyword

The volatile keyword is used to let the compiler know that another thread might be
changing a variable “in the background”, so don’t make any assumptions about what
can be optimized away.

int val = 0;

. . .

while(val != 0) ;

volatile int val = 0;

. . .

while(val != 0) ;

A good compiler optimizer will
eliminate this code because it
“knows” that, for all time, val == 0

The volatile keyword tells the
compiler optimizer that it cannot
count on val being == 0 here

mjb – March 22, 2021

28

Computer Graphics

A = B + 1;
C = 3;

Load B,r0
Add $1,r0
Store r0,A
Load $3,r1
Store r1,C

Prefetch B
Load $3,r1
Store r1,C
Load B,r0
Add $1,r0
Store r0,A

Tip #5 -- Sending a Message to the Optimizer:
The restrict Keyword

Remember our Instruction Level Parallelism example?

Optimize by moving two instructions up to
execute while B is loading

To assembly language

25 26

27 28

8

mjb – March 22, 2021

29

Computer Graphics

int *p;
int *q ;

. . .
p = &B;
q = &B;
A = *p + 1;
*q = 3.;

Load [p],r0
Add $1,r0
Store r0,A
Load $3,r1
Store r1,[q]

Prefetch B
Load $3,r1
Store r1,B
Load B,r0
Add $1,r0
Store r0,A

Sending a Message to the Optimizer:
The restrict Keyword

Here the example has been changed slightly. This is what worries
the out-of-order mechanisms and keeps them from optimizing as
much as they could.

Uh-oh! B is being loaded at the
same time it is being stored into.
Who gets there first?
Which value is correct?

Assembly language Using the pointers, and using
out-of-order processing

Prefetch [p]
Load $3,r1
Store r1,[q]
Load [p],r0
Add $1,r0
Store r0,A

What’s really happening

mjb – March 22, 2021

30

Computer Graphics

int * restrict p;
int * restrict q;

. . .
p = &B;
q = &C;
A = *p + 1;
*q = 3.;

Load [p],r0
Add $1,r0
Store r0,A
Load $3,r1
Store r1,[q]

Sending a Message to the Optimizer:
The restrict Keyword

This is us promising that p and q will never
point to the same memory location.

Prefetch B
Load $3,r1
Store r1,C
Load B,r0
Add $1,r0
Store r0,A

Using the pointers, and using
out-of-order processing

Prefetch [p]
Load $3,r1
Store r1,[q]
Load [p],r0
Add $1,r0
Store r0,A

What’s really happening
Assembly language

Now there is no conflict

mjb – March 22, 2021

31

Computer Graphics

Tip #6 – Beware of False Sharing Caching Issues

We will get to this in the Caching notes!

29 30

31

