
1

mjb – April 9, 2024

1

Computer Graphics

Parallel Programming using OpenMP

openmp.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – April 9, 2024

2

Computer Graphics

OpenMP Multithreaded Programming

• OpenMP stands for “Open Multi-Processing”

• OpenMP is a multi-vendor (see next page) standard to perform shared-memory
multithreading

• OpenMP is both compiler-directive- and library-based

• OpenMP threads share a single executable, a single global memory, and a single
heap (malloc, new)

• Each OpenMP thread has its own stack (function arguments, function return
address, local variables)

• Using OpenMP usually requires no dramatic code changes

• OpenMP probably gives you the biggest multithread benefit per amount of work you
have to put in to using it

Much of your use of OpenMP will be accomplished by issuing
C/C++ “pragmas” to tell the compiler how to build the threads

into your executable, like this:

#pragma omp directive [clause]

mjb – April 9, 2024

3

Computer Graphics

Who is in the OpenMP Consortium?

mjb – April 9, 2024

4

Computer Graphics

What OpenMP Isn’t:

• OpenMP doesn’t check for data dependencies, data conflicts, deadlocks, or race
conditions. You are responsible for avoiding those yourself

• OpenMP doesn’t check for non-conforming code sequences (we'll talk about what this
means)

• OpenMP doesn’t guarantee identical behavior across vendors or hardware, or even
between multiple runs on the same vendor’s hardware

• OpenMP doesn’t guarantee the order in which threads execute, just that they do execute

• OpenMP is not overhead-free

• OpenMP does not prevent you from writing code that triggers cache performance
problems (such as in false-sharing), in fact, it makes it really easy

We will get to “false sharing” in the cache notes

mjb – April 9, 2024

5

Computer Graphics

Memory Allocation in a Multithreaded Program

One-thread Multiple-threads

Stack Stack

Stack

Program
Executable

Common
Program

Executable

Globals Common
Globals

Heap Common
Heap

Don’t take this completely
literally. The exact
arrangement depends on the
operating system and the
compiler. For example,
sometimes the stack and heap
are arranged so that they grow
towards each other.

mjb – April 9, 2024

6

Computer Graphics

1. Go to the Project menu → Project Properties

2. Change the setting Configuration Properties → C/C++ → Language →
OpenMP Support to "Yes (/openmp)"

Using OpenMP in Microsoft Visual Studio

g++ -o proj proj.cpp -lm -fopenmp

Using OpenMP on Linux

If you are using Visual Studio and get a compile message that looks like this:
1>c1xx: error C2338: two-phase name lookup is not supported for C++/CLI, C++/CX, or OpenMP; use /Zc:twoPhase-

then do this:

1. Go to "Project Properties“→ "C/C++" → "Command Line“

2. Add /Zc:twoPhase- in "Additional Options" in the bottom section
3. Press OK

1 2

3 4

5 6

2

mjb – April 9, 2024

7

Computer Graphics

#ifdef _OPENMP
fprintf(stderr, "OpenMP release %d is supported here\n", _OPENMP);

#else
fprintf(stderr, "OpenMP is not supported here – sorry!\n");
return 1;

#endif

Seeing if OpenMP is Supported on Your System

Printing _OPENMP gives you a year and month of the OpenMP release that you are using

To get the OpenMP version number from the year and month, check here:

OpenMP 5.0 – November 2018

OpenMP 4.5 – November 2015

OpenMP 4.0 – July 2013

OpenMP 3.1 – July 2011

OpenMP 2.0 – March 2002

OpenMP 1.0 – October 1998

• By default, flip uses g++ 11.4, which uses OpenMP version 4.5
• Visual Studio 2022 uses OpenMP 2.0

mjb – April 9, 2024

8

Computer Graphics

Numbers of OpenMP threads

How to specify how many OpenMP threads you want to have available:

omp_set_num_threads(num);

Asking how many OpenMP threads this program is using right now:
num = omp_get_num_threads();

Asking which thread number this one is:

me = omp_get_thread_num();

num = omp_get_num_procs();

Asking how many cores this program has access to:

omp_set_num_threads(omp_get_num_procs());

Setting the number of available threads to the exact number of cores available:

Actually returns the number of hyperthreads,
not the number of physical cores

mjb – April 9, 2024

9

Computer Graphics

Creating an OpenMP Team of Threads

This creates a
team of threads

Each thread then executes all
lines of code in this block.

#pragma omp parallel default(none)
{

. . .

}

Think of it this way:

#pragma omp parallel default(none)

mjb – April 9, 2024

10

Computer Graphics

The OpenMP Thread Team Prints a Friendly Message

#include <stdio.h>
#include <omp.h>
int
main()
{

omp_set_num_threads(8);
#pragma omp parallel default(none)
{

printf(“Hello, World, from thread #%d ! \n” , omp_get_thread_num());
}
return 0;

}

Hint: run it several times in a row. What do you see? Why?

mjb – April 9, 2024

11

Computer Graphics

Hello, World, from thread #6 !
Hello, World, from thread #1 !
Hello, World, from thread #7 !
Hello, World, from thread #5 !
Hello, World, from thread #4 !
Hello, World, from thread #3 !
Hello, World, from thread #2 !
Hello, World, from thread #0 !

Hello, World, from thread #0 !
Hello, World, from thread #7 !
Hello, World, from thread #4 !
Hello, World, from thread #6 !
Hello, World, from thread #1 !
Hello, World, from thread #3 !
Hello, World, from thread #5 !
Hello, World, from thread #2 !

Hello, World, from thread #2 !
Hello, World, from thread #5 !
Hello, World, from thread #0 !
Hello, World, from thread #7 !
Hello, World, from thread #1 !
Hello, World, from thread #3 !
Hello, World, from thread #4 !
Hello, World, from thread #6 !

Hello, World, from thread #1 !
Hello, World, from thread #3 !
Hello, World, from thread #5 !
Hello, World, from thread #2 !
Hello, World, from thread #4 !
Hello, World, from thread #7 !
Hello, World, from thread #6 !
Hello, World, from thread #0 !

Uh-oh…

First Run Second Run

Third Run Fourth Run

There is no guarantee of thread execution order!

mjb – April 9, 2024

12

Computer Graphics

Creating OpenMP Threads to Process Loop Passes

This tells the compiler to parallelize the for-loop into multiple threads. Each thread
automatically gets its own personal copy of the variable i because it is defined within the
for-loop body.

The default(none) directive forces you to explicitly declare all variables declared outside the
parallel region to be either private or shared while they are in the parallel region. Variables
declared within the for-loop are automatically private.

#include <omp.h>

. . .

omp_set_num_threads(NUMT);

. . .

#pragma omp parallel for default(none)
for(int i = 0; i < arraySize; i++)
{

. . .

}

Here we ask for them. This creates
a team of threads and divides the
for-loop passes up among those
threads

There is an “implied barrier” at the end where
each thread waits until all threads are done, then
the code continues in a single thread

This sets how many threads will be created. It
doesn’t create them yet; it just says how many
will be used the next time you ask for them.

The code starts out executing
in a single thread

7 8

9 10

11 12

3

mjb – April 9, 2024

13

Computer Graphics

OpenMP for-Loop Rules

• The index must be an int or a pointer

• The start and terminate conditions must have compatible types

• Neither the start nor the terminate conditions can be changed during the
execution of the loop

• The index can only be modified by the changed expression (i.e., not
modified inside the loop itself)

• You cannot use a break or a goto to get out of the loop

• There can be no inter-loop data dependencies such as:
a[i] = a[i-1] + 1.;

#pragma omp parallel for default(none), shared(…), private(…)

for(int index = start ; index terminate condition; index changed)

a[101] = a[100] + 1.; // what if this is the last line of thread #0’s work?

a[102] = a[101] + 1.; // what if this is the first line of thread #1’s work?

mjb – April 9, 2024

14

Computer Graphics

for(index = start ;

index < end
index <= end
index > end
index >= end

index++
++index
index--
--index
index += incr
index = index + incr
index = incr + index
index -= decr
index = index - decr

;)

OpenMP For-Loop Rules

mjb – April 9, 2024

15

Computer Graphics

private(x)
Means that each thread will get its own version of the variable

What to do about Variables Declared Before the for-loop Starts?

shared(x)
Means that all threads will share a common version of the variable

Example:
#pragma omp parallel for default(none), private(x)

default(none)
I recommend that you include this in your OpenMP for-loop directive. This will
force you to explicitly flag all of your externally-declared variables as shared or
private. Don’t make a mistake by leaving it up to the default!

float x = 0.;
#pragma omp parallel for …
for(int i = 0; i < N; i++)
{

x = (float) i;
float y = x*x;
<< more code… >

}

i and y are automatically private because they are
defined within the loop.

Good practice demands that x be explicitly
declared to be shared or private!

mjb – April 9, 2024

16

Computer Graphics

For-loop “Fission”

x[0] = 0.;
y[0] *= 2.;
for(int i = 1; i < N; i++)
{

x[i] = x[i-1] + 1.;
y[i] *= 2.;

}

x[0] = 0.;
for(int i = 1; i < N; i++)
{

x[i] = x[i-1] + 1.;
}

#pragma omp parallel for shared(y)
for(int i = 0; i < N; i++)
{

y[i] *= 2.;
}

Because of the loop dependency, this whole thing is not parallelizable:

But it can be broken into one loop that is not parallelizable, plus one that is:

mjb – April 9, 2024

17

Computer Graphics

For-loop “Collapsing”

for(int i = 1; i < N; i++)
{

for(int j = 0; j < M; j++)
{

. . .
}

}

Uh-oh, which for-loop do you put the #pragma on?

Ah-ha – trick question. You put it on both!

#pragma omp parallel for collapse(2)
for(int i = 1; i < N; i++)
{

for(int j = 0; j < M; j++)
{

. . .
}

}

How many for-loops to
collapse into one loop

mjb – April 9, 2024

18

Computer Graphics

Single Program Multiple Data (SPMD) in OpenMP

#define NUM 1000000

float A[NUM], B[NUM], C[NUM];

. . .

int total = omp_get_num_threads();

#pragma omp parallel default(none),shared(total)

{

int me = omp_get_thread_num();

DoWork(me, total);

}

void DoWork(int m, int t)
{

int first = NUM * m / t;
int last = NUM * (m+1)/t - 1;
for(int i = first; i <= last; i++)
{

C[i] = A[i] * B[i];
}

}

13 14

15 16

17 18

4

mjb – April 9, 2024

19

Computer Graphics

Static Threads
• All work is allocated and assigned at runtime

Dynamic Threads
• The pool is statically assigned some of the work at runtime, but not all of it
• When a thread from the pool becomes idle, it gets a new assignment
• “Round-robin assignments”

OpenMP Scheduling
schedule(static [,chunksize])
schedule(dynamic [,chunksize])
Defaults to static
chunksize defaults to 1

OpenMP Allocation of Work to Threads

mjb – April 9, 2024

20

Computer Graphics

Static,1
0 0,3,6,9
1 1,4,7,10
2 2,5,8,11

Static,2
0 0,1,6,7
1 2,3,8,9
2 4,5,10,11

Static,4
0 0,1,2,3
1 4,5,6,7
2 8,9,10,11

#pragma omp parallel for default(none),schedule(static,chunksize)
for(int index = 0 ; index < 12 ; index++)

chunksize = 1
Each thread is assigned one iteration, then
the assignments start over

chunksize = 2
Each thread is assigned two iterations, then
the assignments start over

chunksize = 4
Each thread is assigned four iterations, then
the assignments start over

OpenMP Allocation of Work to Threads

Think of dealing for-loop passes to
threads the same way as dogs deal cards



mjb – April 9, 2024

21

Computer Graphics

float sum = 0.;
#pragma omp parallel for default(none), shared(sum)
for(int i = 0; i < N; i++)

{
float myPartialSum = …

sum = sum + myPartialSum;
}

• There is no guarantee when each thread will execute this line

• There is not even a guarantee that each thread will finish this line before some
other thread interrupts it. (Remember that each line of code usually generates
multiple lines of assembly.)

• This is non-deterministic !

Arithmetic Operations Among Threads – A Problem

Conclusion: Don’t do it this way!

Load sum
Add myPartialSum
Store sum

Assembly code:

What if the scheduler
decides to switch
threads right here?

mjb – April 9, 2024

22

Computer Graphics

0.469635
0.517984
0.438868
0.437553
0.398761
0.506564
0.489211
0.584810
0.476670
0.530668
0.500062
0.672593
0.411158
0.408718
0.523448

0.398893
0.446419
0.431204
0.501783
0.334996
0.484124
0.506362
0.448226
0.434737
0.444919
0.442432
0.548837
0.363092
0.544778
0.356299

Here’s a trapezoid integration example.
The partial sums are added up, as shown on the previous page.

The integration was done 30 times.
The answer is supposed to be exactly 2.

None of the 30 answers is even close.
And not only are the answers bad, but they are not even consistently bad!

Don’t do it this way! We’ll talk about how to do it correctly in the Trapezoid Integration noteset.

mjb – April 9, 2024

23

Computer Graphics

Mutual Exclusion Locks (Mutexes)
omp_init_lock(omp_lock_t *);
omp_set_lock(omp_lock_t *);
omp_unset_lock(omp_lock_t *);
omp_test_lock(omp_lock_t *);

(omp_lock_t is really an array of 4 unsigned chars)

Critical sections
#pragma omp critical

Restricts execution to one thread at a time

#pragma omp single
Restricts execution to a single thread ever

Barriers
#pragma omp barrier

Forces each thread to wait here until all threads arrive

Synchronization

(Note: there is an implied barrier after parallel for loops and OpenMP sections,
unless the nowait clause is used)

If the lock is not available, returns 0
If the lock is available, sets it and returns !0

Blocks if the lock is not available
Then sets it and returns when it is available

mjb – April 9, 2024

24

Computer Graphics

omp_lock_t Sync;
. . .
omp_init_lock(&Sync);

. . .

omp_set_lock(&Sync); omp_set_lock(&Sync);
<< code that needs the mutual exclusion >> << code that needs the mutual exclusion >>
omp_unset_lock(&Sync); omp_unset_lock(&Sync);

Synchronization Example

Thread #0: Thread #1:

19 20

21 22

23 24

5

mjb – April 9, 2024

25

Computer Graphics

omp_lock_t Sync;
. . .
omp_init_lock(&Sync);

. . .

while(omp_test_lock(&Sync) == 0) while(omp_test_lock(&Sync) == 0)
{ {

DoSomeUsefulWork_0(); DoSomeUsefulWork_1();
} }

Synchronization Example

Thread #0: Thread #1:

mjb – April 9, 2024

26

Computer Graphics

#pragma omp single

Restricts execution to a single thread ever. This is used when an operation only
makes sense for one thread to do. Reading data from a file is a good example.

Single-thread-execution Synchronization

mjb – April 9, 2024

27

Computer Graphics

Creating Sections of OpenMP Code

#pragma omp parallel sections

{

#pragma omp section
{

Task 1

}

#pragma omp section
{

Task 2
}

}

Sections are independent blocks of code, able to be
assigned to separate threads if they are available.

(Note: there is an implied barrier after parallel for loops and OpenMP
sections, unless the nowait clause is used)

mjb – April 9, 2024

28

Computer Graphics

omp_set_num_threads(3);

#pragma omp parallel sections
{

#pragma omp section
{

Watcher();
}

#pragma omp section
{

Animals();
}

#pragma omp section
{

Plants();
}

} // implied barrier -- all functions must return to get past here

A Functional Decomposition Sections Example

mjb – April 9, 2024

29

Computer Graphics

If you print to standard error (stderr) from inside a for-loop, like I do, then
you think that you need to include stderr in the shared list because, well,
the loops share it:

#pragma omp parallel for default(none) shared(a,b,stderr)

This turns out to be true for g++/gcc only.

If you are using Visual Studio, then do not include stderr in the list.
If you do, you will get this error:

1>Y:\CS575\SQ22\robertw5-01\Project1\Project1.cpp(113,98): error C2059: syntax error: '(‘

A Potential OpenMP/Visual Studio Compiler Problem

This is because:
• In g++/gcc, stderr is a variable
• In Visual Studio, stderr is a defined macro

25 26

27 28

29

