Performing Reductions in OpenCL

Oregon State
University
Mike Bailey
mjb@cs.oregonstate.edu

licensed under

a Creative Commons
NoDerivatives 4.0

University
Computer Graphics

oo mb _June 14,2021

Recall the OpenCL Memory Model

Kernel

| Global Memory |

Constant Memory

WorkGroup
|WorkGroup
WorkGro
< Shared Memol

\
Work-/ Wor- Worl-
Item ttem ttem
§2 g2 §2
EEERLE

University
Computer Graphics

mb _June 14,2021

1

2

Here’s the Problem We are Trying to Solve 3

Like the first.cpp demo program, we are numitems = 8;

piecewise multiplying two arrays. Unlike
the first demo program, we want to then
add up all the products and return the sum.

A*B — prods

2 prods — C

After the array multiplication, we want each
work-group to sum the products within that
work-group, then return them to the host in
an array for final summing.

To do this, we will not put the products into a
large global device array, but into a prods|]
array that is shared within its work-group.

L

ved | ek] e

@&

iversity
Computer Graphics

mb - June 14,2021

Reduction Takes Place in a Single Work-Group

numitems = 8;

If we had 8 work-items in a work-group, we would
like the threads in each work-group to execute
the following instructions . . .

Thread #0: Thread #0:
prods[0] += prods{ 1]; | prods[0] += prods 2 ;

Thread #2:
prods[2] += prods[3];

Thread #4: Thread #4:
prods[4]+= prods[5]; | prods[4] += prods[6];

Thread #5:
prods[6] += prods{ 7 J;

. but in a more general way than writing them all out by hand.

niver
Computer Graphics

3

Here’s What You Would Change in your Host Program

size_t numWorkGroups = NUM_ELEMENTS / LOCAL_SIZE;
oo e A*B — prods

float* hA = new float [NUM_ELEMENTS J;

float* hB = new float [NUM_ELEMENTS |; z prods — c

float* hC = new float [numWorkGroups |;

size_t abSize = NUM_ELEMENTS * sizeof(float);

size_t cSize = numWorkGroups * sizeof(float);

oo o

cl_mem dA = cICreateBuffer(context, CL_MEM_READ_ONLY, abSize, NULL, &status);

cl_mem dB = cICreateBuffer(context, CL_MEM_READ_ONLY, abSize, NULL, &status);

cl_mem dC = clCreateBuffer(context, CL_MEM_WRITE_ONLY, cSize, NULL, &status);
oo o

status = clEnqueueWriteBuffer(cmdQueue, dA, CL_FALSE, 0, abSize, hA, 0, NULL, NULL);

status = clEnqueueWriteBuffer(cmdQueue, dB, CL_FALSE, 0, abSize, hB, 0, NULL, NULL);
oo o

cl_kernel kernel = clCreateKernel(program, "ArrayMultReduce", &status);

e e o This NULL is how you tell
OpenCL that this is a local
status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &dA); (shared) array, not a global array
status = cISetKernelArg(kernel, 1, sizeof(cl_mem), &dB);

status = cISetKernelArg(kernel, 2, LOCAL_SIZE * sizeof(float), NULL);
Il'ocal “prods” array is dimensioned the size of each work-group
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &dC);

Compuer Graphies

mb _Jure 14,2021

4

The Arguments to the Kernel

status = clSetKernelArg(kernel,
status = clSetKernelArg(kern
status = clSetKernelArg(kep

, sizeof(cl_mem), &dA);
, sizeof(cl_mem), &dB);

el/2, LOCAL_SIZE * sizeof(float), NULL);
\z /I local “prods” array — one per work-item

status = clSetKernelArg¢kern¢l, 3, sizeof(cl_mem), &dC);

Coi—

kernel void \r
ArrayMultReduce(global const float *dA, global const float *dB, local float *prods, global float *dC)
{

= get_global_id(0); 110 .. total_array_size-1

et_local_size(0); //# work-items per work-group

inttnum =get_local_id(0); Ilthread (i.e., work-item) number in this work-group
/10 .. numitems-1

intwgNum = get_group_id(0); //which work-group number this is in

prods[tnum] = dA[gid] * dB[gid]; // multiply the two arrays together

/I mow add them up — come up with one sum per work-group
Il'it is a big performance benefit to do it here while “prods” is still available — and is local
/'t would be a performance hit to pass “prods” back to the host then bring it back to the device for reduction

A*B—»prods}

Orego

rsity
Computer Graphics
-

14,2021

6

Each work-item is run

Reduction Takes Place Within a Single Work-Group 7

by a single thread

Thread #0:

Thread #2:
prods[2] += prods[3];
Thread #4: Thread #4:
prods[4]+=prods[5]; | prods[4]+= prods[6];
Thread #6: "ﬁsel: = §
prods[6] += prods{ 7 |; mask=3;
offset = 1;
mask = 1;

Thread #0: Thread #0:
prods[0] += prods{ 1]; | prods[0]+= prods{ 2]; | prods[0] += prods[41;

A work-group consisting of numltems work-items
can be reduced to a sum in log,(numitems)
steps. In this example, numltems=8.

The reduction begins with the individual products
in prods[0] .. prods([7].

The final sum will end up in prods[0], which will
then be copied into dC[wgNum].

University
Computer Graphics

mb _June 14,2021

7

Reduction Takes Place in a Single Work-Group 9
Each work-item is run by a single thread
Thread #0: Thread #0: Thread #0:
prods[0]+=prods[1]; | prods[0]+= prods[2]; | prods[0] += prods[4];
Thread #2: offset=4;
prods[2] += prods[3 ; mask =7;
Thread #4: Thread #4: kernel void
prods[4] += prods[5]; | prods[4] += prods[6]; ArrayMultReduce(...)
offset = 2; int gid = get_global_id(0);
Thread #6: mask = 3. int numlitems = get_local_size(0);
prods[6] += prods[7]; ! int thum =get_local_id(0); / thread number
offset = 1; intwgNum = get_group_id(0); / work-group number
mask = 1;
prods[tnum] = dA[gid] * dB[gid];

numltems = 8;

int mask = 2*offset

Anding bits —|
> prods — j
AIn

University
Computer Graphics

}

if(thum == 0)

I/ all threads execute this code simultaneously:
for(int offset = 1; offset < numltems; offset *= 2)

-1
rrier(CLK_LOCAL_MEM_FENCE); // wait for all threads to get here
if((tnum & mask)==0)

1/ bit-by-bit and’ing tells us which
/I threads need to do work now

prods| tnum] += prods[tnum + offset];

barrier(CLK_LOCAL_MEM_FENCE);

dC[wgNum] = prods[0 J;

A Review of Bitmasks 8
Remember Truth Tables?
F T
&F &F
= = F
Or, with Bits:
)
0 &1 &0
=0 [=0] [=o
Or, with Multiple Bits:
000 001 010 011 100 101
& 011 & 011 & 011 & 011 & 011 & 011
=000 =001 =010 =011 =000 =001
University
Computer Graphics
i~ une 18,2001
8
10

And, Finally, in your Host Program

Wait(cmdQueue);
double time0 = omp_get_wtime();

status = clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize, localWorkSize,
0, NULL, NULL);
PrintCLError(status, "clEnqueueNDRangeKernel failed: ");

Wait(cmdQueue);
double time1 = omp_get_wtime();

status = clEnqueueReadBuffer(cmdQueue, dC, CL_TRUE, 0, numWorkGroups*sizeofifloat), hC,
0, NULL, NULL);

PrintCLError(status, "clEnqueueReadBufferl failed: ");

Wait(cmdQueue);

float sum = 0.;
for(int i = 0; i < numWorkgroups; i++)

sum +=hC[i];

niver
Computer Graphics

9

mb _Jure 14,2021

Work-Group

GigaNumbers Multiplied and Reduced Per Second)

Iniversity
Computer Graphics

Reduction Performance

Size = 32

Array Size (MegaNumbers)

11

10

