

1

Here's the Problem We are Trying to Solve
3

Like the first.cpp demo program, we are piecewise multiplying two arrays. Unlike the first demo program, we want to then add up all the products and return the sum
A*B \rightarrow prods
Σ prods $\rightarrow C$
After the array multiplication, we want each work-group to sum the products within that work-group, then return them to the host in an array for final summing.

To do this, we will not put the products into a large global device array, but into a prods[] array that is shared within its work-group.

numltems $=8$;

2

5

6

9

And, Finally, in your Host Program

Wait(cmdQueue);

double time $0=$ omp_get_wtime();
status = cIEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize, localWorkSize, 0, NULL, NULL)
PrintCLError(status, "clEnqueueNDRangeKernel failed: ")
Wait(cmdQueue);
double time1 = omp_get_wtime();
status $=$ clEnqueueReadBuffer(cmdQueue, dC, CL_TRUE, 0, numWorkGroups*sizeof(float), hC, 0 , NULL, NULL
PrintCLError(status, "clEnqueueReadBufferl failed: ")
Wait(cmdQueue);
float sum $=0$.;
float sum $=0 . ;$
for (int $i=0 ; i<n u m W o r k g r o u p s ; ~ i++~)$
\{ sum $+=h C[i]$;
Oregon State
University
Computer Graphic
10

