Performing Reductions in OpenCL

Oregon State
University

OpenCL

BN
g

-
-

. . N
Mike Bailey .\ fra
OpenCL
mjb@cs.oregonstate.edu - #a —
R
Attribution-NonCommercial-NoDerivatives 4.0 OpenCL
International License 3 R
& a
6, l ea R
] OpencL
Oregon State - fa
University ./ ot
Computer Graphics *
opencl.reduction.pptx mjb — June 14, 2021
2
Recall the OpenCL Memory Model
Kernel
Global Memory
| Constant Memory |
[WorkGroup
| WorkGroup :l
| WorkGroup]
WorkGroup___
< SJIarec‘Memorx
Work{ Worl - Worl—
Item Item Item
=7 =7 <]
o o o = @ =
35 35 35 _—
2@ 2@ I @
(i
Oregon State
University

Computer Graphics

mjb — June 14, 2021

Here’s the Problem We are Trying to Solve 3

Like the first.cop demo program, we are numitems = 8;
piecewise multiplying two arrays. Unlike
the first demo program, we want to then
add up all the products and return the sum.

| o

A* B — prods
2 prods — C

After the array multiplication, we want each
work-group to sum the products within that
work-group, then return them to the host in
an array for final summing.

To do this, we will not put the products into a
large global device array, but into a prods[]
array that is shared within its work-group.

WorkGro
[« Shared Memor D
w=mj worf- | [wor
Item! Iten Item

Oregon State
University
Computer Graphics

[==]
=

mjb — June 14, 2021

Reduction Takes Place in a Single Work-Group

numltems = 8;

=4

If we had 8 work-items in a work-group, we would
like the threads in each work-group to execute
the following instructions . . .

Thread #0: Thread #0: Thread #0:
- prods[0] +=prods[1]; | prods[0] +=prods[2]; | prods[0] += prods[4];
3
Thread #2:
prods[2] += prods[3 J;
L4 4]
Thread #4: Thread #4:
prods[4] +=prods[5]; | prods[4] += prods| 6];
Thread #6:
prods[6] += prods[7 ;
e

i . but in a more general way than writing them all out by hand.
EAE

Oregon State
University
Computer Graphics
mjb — June 14, 2021

Here’s What You Would Change in your Host Program

size_t numWorkGroups = NUM_ELEMENTS / LOCAL_SIZE;

oo o A* B — prods
float * hA = new float [NUM_ELEMENTS J;
float * hB = new float [NUM_ELEMENTS]; Z prOdS —C

float * hC = new float [numWorkGroups J;
size_t abSize = NUM_ELEMENTS * sizeof(float);
size_t cSize = numWorkGroups * sizeof(float);

cl_mem dA = clCreateBuffer(context, CL_MEM_READ_ONLY, abSize, NULL, &status);
cl_mem dB = cICreateBuffer(context, CL_MEM_READ_ONLY, abSize, NULL, &status);
cl_mem dC = cICreateBuffer(context, CL_MEM_WRITE_ONLY, cSize, NULL, &status);

status = clEnqueueWriteBuffer(cmdQueue, dA, CL_FALSE, 0, abSize, hA, 0, NULL, NULL);
status = clEnqueueWriteBuffer(cmdQueue, dB, CL_FALSE, 0, abSize, hB, 0, NULL, NULL);

cl_kernel kernel = clCreateKernel(program, "ArrayMultReduce", &status);

o o o This NULL is how you tell
OpenCL that this is a local
status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &dA); (shared) array, not a global array
status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &dB);

status = clSetKernelArg(kernel, 2, LOCAL_SIZE * sizeof(float), NULL);
Il local “prods” array is dimensioned the size of each work-group
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &dC);

OTMPUTCT GTapmnic

mjb — June 14, 2021

The Arguments to the Kernel

status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &dA);

status = clSetKernelArg(kernef; A, sizeof(cl_mem), &dB);

status = clSetKernelArg(kerAel/2, LOCAL_SIZE * sizeof(float), NULL);

/I'local “prods” array — one per work-item

status = cISetKernelAri

kernel void \
ArrayMultReduce(global const float *dA, global const float *dB, Tocal float *prods, global float *dC)
{

int gid = get_global_id(0); /10 .. total_array_size-1
int numltems = get_local_size(0); // # work-items per work-group
int thum = get_local_id(0); /I thread (i.e., work-item) number in this work-group

/10 .. numltems-1
intwgNum = get_group_id(0); // which work-group number this is in

prods[tnum] = dA[gid] * dB[gid]; // multiply the two arrays together A* B — prods }

/I now add them up — come up with one sum per work-group
/l'itis a big performance benefit to do it here while “prods” is still available — and is local
/I'it would be a performance hit to pass “prods” back to the host then bring it back to the device for reduction

Oregon State
University
Computer Graphics

mjb — June 14, 2021

Reduction Takes Place Within a Single Work-Group
Each work-item is run by a single thread

Thread #0:
prods[0] += prods[1];

Thread #2:
prods[2] += prods[3];

Thread #0:
prods[0] += prods|[2 |;

Thread #0:
prods[0] += prods[4];

Thread #4: Thread #4:
prods[4] +=prods[5]; | prods[4] += prods| 6];
Thread #6: Offse: f §
prods[6] += prods[7 |; mask = 3;
offset = 1;
mask = 1;

offset = 4;
mask = 7;

Kernel

4

%

-
n:

Memory |

c]’i:a

I 1
| ﬁkﬂroup

A work-group consisting of numltems work-items
can be reduced to a sum in log,(numitems) [workefoup] :l
steps. In this example, numltems=8. WorkGi l
The reduction begins with the individual products (SJrareq Memory
in prods[0] .. prods[7].
WOI‘KJ Work- Wol’&-
Item Item Item
The final sum will end up in prods[0], which will
then be copied into dC[wgNum]. 53 2 2 —
OregoSlale -
University
Computer Graphics
A Review of Bitmasks 8
Remember Truth Tables?
F F T T
&F &T &F &T
=F = =F =T
Or, with Bits:
0 1 1
&0 &1 &0 &1
=0 =0 =0 =1
Or, with Multiple Bits:
000 001 010 011 100 101
& 011 & 011 & 011 & 011 & 011 & 011
=000 =001 =010 =01 =000 =001

Oregon State
University
Computer Graphics

mjb — June 14, 2021

Reduction Takes Place in a Single Work-Group 9
Each work-item is run by a single thread

Thread #0: Thread #0: Thread #0:
prods[0] +=prods[1]; | prods[0] +=prods[2]; | prods[0] += prods[4 |;
Thread #2: offselz f ‘71’
prods[2] += prods| 3 |; mask = 7;
Thread #4: Thread #4: kernel void
prods[4] +=prods[5]; | prods[4] += prods[6]; ArrayMultReduce(...)
offset = 2; int gid = get_global_id(0);
Thread #6: mask = 3. int numltems = get_local_size(0);
prods[6] += prods[7 J; ' int tnum =get_local_id(0); // thread number
offset = 1; intwgNum = get_group_id(0); // work-group number
mask = 1;
prods[thum] = dA[gid] * dB[gid |;
numltems = 8; /I all threads execute this code simultaneously:
for(int offset = 1; offset < numltems; offset *=2)
{
Andi bit int mask = 2*offset - 1;
nding bis— barrier(CLK_LOCAL_MEM_FENCE); // wait for all threads to get here
if((tnum & mask)==0) /I bit-by-bit and’ing tells us which
/I threads need to do work now
rods|[thnum] += prods[thum + offset];
Zprods—»C } prods{ 1+= prods|]
}
OregonState barrier(CLK_LOCAL_MEM_FENCE);
University if(thum ==0)
Computer Graphics dC[wgNum] = prods[0 J;

10
And, Finally, in your Host Program

Wait(cmdQueue);
double time0 = omp_get_wtime();

status = clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize, localWorkSize,
0, NULL, NULL);
PrintCLError(status, "clEnqueueNDRangeKernel failed: ");

Wait(cmdQueue);
double time1 = omp_get_wtime();

status = clEnqueueReadBuffer(cmdQueue, dC, CL_TRUE, 0, numWorkGroups*sizeof(float), hC,
0, NULL, NULL);

PrintCLError(status, "clEnqueueReadBufferl failed: ");

Wait(cmdQueue);

float sum =0
for(inti = 0; i < numWorkgroups; i++)

{
}

sum += hC[i];

b
Oregon State
University
Computer Graphics
mjb — June 14, 2021

10

1
Reduction Performance

Work-Group Size = 32

o
=)

50 100 150 200 250 300

GigaNumbers Multiplied and Reduced Per Second)

Array Size (MegaNumbers)

OregonState
i)
Computer Graphics A A

mjb — June 14, 2021

11

