
mjb – June 14, 2021

1

Computer Graphics

Performing Reductions in OpenCL

opencl.reduction.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – June 14, 2021

2

Computer Graphics

Kernel

Global Memory

Constant Memory

WorkGroup

Local Memory

Work-
Item

Work-
Item

Work-
Item

WorkGroup

Local Memory

Work-
Item

Work-
Item

Work-
Item

WorkGroup

Local Memory

Work-
Item

Work-
Item

Work-
Item

Recall the OpenCL Memory Model

WorkGroup

Shared Memory

Work-
Item

Work-
Item

Work-
Item

P
rivate

M
e

m
ory

P
rivate

M
e

m
ory

P
rivate

M
e

m
ory

mjb – June 14, 2021

3

Computer Graphics

0

1

2

3

4

5

0

6

7

2

4

6

0

4

0

Here’s the Problem We are Trying to Solve

A * B → prods

Σ prods → C

Like the first.cpp demo program, we are
piecewise multiplying two arrays. Unlike
the first demo program, we want to then
add up all the products and return the sum.

numItems = 8;

After the array multiplication, we want each
work-group to sum the products within that
work-group, then return them to the host in
an array for final summing.

To do this, we will not put the products into a
large global device array, but into a prods[]
array that is shared within its work-group.

mjb – June 14, 2021

4

Computer Graphics

0

1

2

3

4

5

0

6

7

2

4

6

0

4

0

Reduction Takes Place in a Single Work-Group

Thread #0:
prods[0] += prods[1];

Thread #2:
prods[2] += prods[3];

Thread #4:
prods[4] += prods[5];

Thread #6:
prods[6] += prods[7];

Thread #0:
prods[0] += prods[2];

Thread #4:
prods[4] += prods[6];

Thread #0:
prods[0] += prods[4];

If we had 8 work-items in a work-group, we would
like the threads in each work-group to execute
the following instructions . . .

. . . but in a more general way than writing them all out by hand.

numItems = 8;

mjb – June 14, 2021

5

Computer Graphics

Here’s What You Would Change in your Host Program

size_t numWorkGroups = NUM_ELEMENTS / LOCAL_SIZE;

float * hA = new float [NUM_ELEMENTS];
float * hB = new float [NUM_ELEMENTS];
float * hC = new float [numWorkGroups];
size_t abSize = NUM_ELEMENTS * sizeof(float);
size_t cSize = numWorkGroups * sizeof(float);

cl_mem dA = clCreateBuffer(context, CL_MEM_READ_ONLY, abSize, NULL, &status);
cl_mem dB = clCreateBuffer(context, CL_MEM_READ_ONLY, abSize, NULL, &status);
cl_mem dC = clCreateBuffer(context, CL_MEM_WRITE_ONLY, cSize, NULL, &status);

status = clEnqueueWriteBuffer(cmdQueue, dA, CL_FALSE, 0, abSize, hA, 0, NULL, NULL);
status = clEnqueueWriteBuffer(cmdQueue, dB, CL_FALSE, 0, abSize, hB, 0, NULL, NULL);

cl_kernel kernel = clCreateKernel(program, "ArrayMultReduce", &status);

status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &dA);
status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &dB);
status = clSetKernelArg(kernel, 2, LOCAL_SIZE * sizeof(float), NULL);

// local “prods” array is dimensioned the size of each work-group
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &dC);

A * B → prods

Σ prods → C

• • •

• • •

• • •

• • •

• • • This NULL is how you tell
OpenCL that this is a local
(shared) array, not a global array

mjb – June 14, 2021

6

Computer Graphics

The Arguments to the Kernel

kernel void
ArrayMultReduce(global const float *dA, global const float *dB, local float *prods, global float *dC)
{

int gid = get_global_id(0); // 0 .. total_array_size-1
int numItems = get_local_size(0); // # work-items per work-group
int tnum = get_local_id(0); // thread (i.e., work-item) number in this work-group

// 0 .. numItems-1
int wgNum = get_group_id(0); // which work-group number this is in

prods[tnum] = dA[gid] * dB[gid]; // multiply the two arrays together

// now add them up – come up with one sum per work-group
// it is a big performance benefit to do it here while “prods” is still available – and is local
// it would be a performance hit to pass “prods” back to the host then bring it back to the device for reduction

status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &dA);
status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &dB);
status = clSetKernelArg(kernel, 2, LOCAL_SIZE * sizeof(float), NULL);

// local “prods” array – one per work-item
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &dC);

A * B → prods

mjb – June 14, 2021

7

Computer Graphics

Thread #0:
prods[0] += prods[1];

Thread #2:
prods[2] += prods[3];

Thread #4:
prods[4] += prods[5];

Thread #6:
prods[6] += prods[7];

Thread #0:
prods[0] += prods[2];

Thread #4:
prods[4] += prods[6];

Thread #0:
prods[0] += prods[4];

offset = 1;
mask = 1;

offset = 2;
mask = 3;

offset = 4;
mask = 7;

Reduction Takes Place Within a Single Work-Group
Each work-item is run by a single thread

A work-group consisting of numItems work-items
can be reduced to a sum in log2(numItems)
steps. In this example, numItems=8.

The reduction begins with the individual products
in prods[0] .. prods[7].

The final sum will end up in prods[0], which will
then be copied into dC[wgNum].

mjb – June 14, 2021

8

Computer Graphics

A Review of Bitmasks

F
& F
= F

Remember Truth Tables?

F
& T
= F

T
& F
= F

T
& T
= T

0
& 0
= 0

0
& 1
= 0

1
& 0
= 0

1
& 1
= 1

Or, with Bits:

000
& 011
= 000

001
& 011
= 001

010
& 011
= 010

011
& 011
= 011

100
& 011
= 000

101
& 011
= 001

Or, with Multiple Bits:

mjb – June 14, 2021

9

Computer Graphics

// all threads execute this code simultaneously:
for(int offset = 1; offset < numItems; offset *= 2)

{
int mask = 2*offset - 1;
barrier(CLK_LOCAL_MEM_FENCE); // wait for all threads to get here
if((tnum & mask) == 0) // bit-by-bit and’ing tells us which
{ // threads need to do work now

prods[tnum] += prods[tnum + offset];
}

}

barrier(CLK_LOCAL_MEM_FENCE);
if(tnum == 0)

dC[wgNum] = prods[0];

kernel void
ArrayMultReduce(…)

int gid = get_global_id(0);
int numItems = get_local_size(0);
int tnum = get_local_id(0); // thread number

int wgNum = get_group_id(0); // work-group number

prods[tnum] = dA[gid] * dB[gid];

Thread #0:
prods[0] += prods[1];

Thread #2:
prods[2] += prods[3];

Thread #4:
prods[4] += prods[5];

Thread #6:
prods[6] += prods[7];

Thread #0:
prods[0] += prods[2];

Thread #4:
prods[4] += prods[6];

Thread #0:
prods[0] += prods[4];

offset = 1;
mask = 1;

offset = 2;
mask = 3;

offset = 4;
mask = 7;

Σ prods → C

Reduction Takes Place in a Single Work-Group
Each work-item is run by a single thread

numItems = 8;

Anding bits

mjb – June 14, 2021

10

Computer Graphics

And, Finally, in your Host Program

Wait(cmdQueue);
double time0 = omp_get_wtime();

status = clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize, localWorkSize,
0, NULL, NULL);

PrintCLError(status, "clEnqueueNDRangeKernel failed: ");

Wait(cmdQueue);
double time1 = omp_get_wtime();

status = clEnqueueReadBuffer(cmdQueue, dC, CL_TRUE, 0, numWorkGroups*sizeof(float), hC,
0, NULL, NULL);

PrintCLError(status, "clEnqueueReadBufferl failed: ");
Wait(cmdQueue);

float sum = 0.;
for(int i = 0; i < numWorkgroups; i++)
{

sum += hC[i];
}

mjb – June 14, 2021

11

Computer Graphics

Array Size (MegaNumbers)

G
ig

a
N

um
be

rs
M

u
lti

p
lie

d
 a

nd
 R

ed
uc

e
d

P
er

 S
e

co
n

d)

Reduction Performance
Work-Group Size = 32

0

1

2

3

4

5

6

0 50 100 150 200 250 300

