Performing Reductions in OpenCL

Recall the OpenCL Memory Model

2

Here's the Problem We're Trying to Solve

Like the *first.cpp* demo program, we are piecewise multiplying two arrays. Unlike the first demo program, we want to then add up all the products and return the sum.

 $\begin{array}{l} A^* \: B \to prods \\ \Sigma \: prods \to C \end{array}$

After the array multiplication, we want each work-group to sum the products within that work-group, then return them to the host in an array for final summing.

To do this, we will not put the products into a large global device array, but into a **prods[]** array that is shared within its work-group.

WorkGroup Shared Memory Work-Item Work-Item Private Memory Memory numltems = 8;

Reduction Takes Place in a Single Work-Group

Here's What You Would Change in your Host Program

The Arguments to the Kernel

University Computer Graphics

Reduction Takes Place Within a Single Work-Group Each work-item is run by a single thread

A Review of Bitmasks

Remember *Truth Tables*?

Or, with Bits:

Or, with Multiple Bits:

If it's been a long time since you have looked at bitmask operators (or never!), here is a good review reference: https://en.wikipedia.org/wiki/Bitwise operations in C

Computer Graphics

Reduction Takes Place in a Single *Work-Group* Each *work-item* is run by a single thread

9

And, Finally, in your Host Program

```
Wait( cmdQueue );
double time0 = omp_get_wtime();
status = clEnqueueNDRangeKernel( cmdQueue, kernel, 1, NULL, globalWorkSize, localWorkSize,
                                   0, NULL, NULL );
PrintCLError( status, "clEnqueueNDRangeKernel failed: ");
Wait( cmdQueue );
double time1 = omp_get_wtime();
status = clEnqueueReadBuffer( cmdQueue, dC, CL_TRUE, 0, numWorkGroups*sizeof(float), hC,
                                   0, NULL, NULL );
PrintCLError( status, "clEnqueueReadBufferl failed: ");
Wait( cmdQueue );
float sum = 0.;
for( int i = 0; i < numWorkgroups; i++ )</pre>
          sum += hC[i];
```

Oregon State University Computer Graphics

Reduction Performance Work-Group Size = 32

Array Size (MegaNumbers)

11