Performing Reductions in OpenCL

OregonState |~

OpenCL

University =
Mike Bailey

*a

OpenCL

OpenCL

Q‘?

5“% — OpenCL
@ ®®©\ mjb@cs.oregonstate.edu = > & a
fa OpenCL .“Eﬁ :
OpenCL &
This work is licensed under a Creative Commons =
Attribution-NonCommercial-NoDerivatives 4.0 a OpenCL
International License Ll
- s /\'l
:’“% OpenCL <€,
OpencL :.‘ V)‘
:‘“% OpenCL
OpenCL QES
Oregon State — > S ra
UI‘].iVEI‘Sity 5‘ /é OpenCL

OpenCL

Computer Graphics
opencl.reduction.pptx mjb — June 14, 2021

o

Oregon State

University
Computer Graphics

Recall the OpenCL Memory Model

Kernel

Global Memory

Constant Memory

WorkGroup

WorkGroup

WorkGroup

WorkGrou

‘\

Sxmarecl Memorx

4\/

~—7

Work!
Item

Wo
Ite

:}

Wo rL—

Item

Alows|\
aleAlid

Alows|\
aleAlid

Alows|\
aleAlld

mjb — June 14, 2021

Here’s the Problem We are Trying to Solve

Like the first.cpp demo program, we are
piecewise multiplying two arrays. Unlike
the first demo program, we want to then
add up all the products and return the sum.

A* B — prods
2 prods — C

After the array multiplication, we want each
work-group to sum the products within that
work-group, then return them to the host in
an array for final summing.

To do this, we will not put the products into a
large global device array, but into a prods|]
array that is shared within its work-group.

WorkGroup
(SPareq_Memor‘] >

s . Workj worf. | [work;

@IE] Item Iten Item
Oregon State 52| (||52 e
) - e g2 g3
University ga | flles | [][2®

Computer Graphics

numltems = 8;

0 0
1
2 2
3
4 4
5
6 6
7

mjb — June 14, 2021

numltems = 8;

Reduction Takes Place in a Single Work-Group

0 0
If we had 8 work-items in a work-group, we would
like the threads in each work-group to execute
the following instructions . . .
Thread #0: Thread #0: Thread #0:

prods[0] += prods[1 |;

Thread #2:
prods[2] += prods[3 |;

0 0
1

2 2
3

4 4
5

6 6
=/

\r.

/]
[Py x ke

Oregon State
University
Computer Graphics

Thread #4:
prods[4] += prods[5 |;

Thread #6:
prods[6] += prods[7 |;

prods[0] += prods[2 |;

Thread #4:
prods[4] += prods[6 |;

prods[0] += prods[4 |;

. .. but in a more general way than writing them all out by hand.

mjb — June 14, 2021

Here’s What You Would Change in your Host Program

size_t numWorkGroups = NUM_ELEMENTS / LOCAL_SIZE;

** A* B — prods
float * hA = new float [NUM_ELEMENTS J;
float * hB = new float [NUM_ELEMENTS ; Z prods — C

float * hC = new float [numWorkGroups J;
size t abSize = NUM_ELEMENTS * sizeof(float);
size t c¢Size = numWorkGroups * sizeof(float);

cl_mem dA = clCreateBuffer(context, CL_ MEM_READ_ONLY, abSize, NULL, &status);
cl_mem dB = clCreateBuffer(context, CL_MEM_READ_ ONLY, abSize, NULL, &status);
cl_mem dC = clCreateBuffer(context, CL_ MEM_WRITE_ONLY, cSize, NULL, &status);

status = clEnqueueWriteBuffer(cmdQueue, dA, CL_FALSE, 0, abSize, hA, 0, NULL, NULL);
status = clEnqueueWriteBuffer(cmdQueue, dB, CL_FALSE, 0, abSize, hB, 0, NULL, NULL);

cl_kernel kernel = clCreateKernel(program, "ArrayMultReduce", &status);

. o o This NULL is how you tell
OpenCL that this is a local
status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &dA); (shared) array, not a global array
status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &dB);

status = clSetKernelArg(kernel, 2, LOCAL_SIZE * sizeof(float), NULL);
Il local “prods” array is dimensioned the size of each work-group
status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &dC);

TIPUTET GTapIIcs
mjb — June 14, 2021

The Arguments to the Kernel 6

status = clSetKernelArg(kernel, O, sizeof(cl_mem), &dA);
status = clSetKernelArg(kernef, A, sizeof(cl_mem), &dB);
status = clSetKernelArg(kerpiel /2, LOCAL SIZE * sizeof(float), NULL);

// local “prods” array — one per work-item
status = clSetKernelArg{kerngl, 3 izeof(cl_mem), &dC);

kernel void
ArrayMultReduce(global const float *dA, global const float *dB, ocal float *prods, global float *dC)
{
int gid = get_global_id(0); // 0 .. total_array_size-1
int numltems = get_local_size(0); // # work-items per work-group
int thum = get_local_id(0); // thread (i.e., work-item) number in this work-group
/[0 .. numltems-1
int wgNum = get_group_id(0); // which work-group number this is in
prods[tnum] = dA[gid] * dB[gid]; // multiply the two arrays together A* B — prods
// now add them up — come up with one sum per work-group
/it is a big performance benefit to do it here while “prods” is still available — and is local
/it would be a performance hit to pass “prods” back to the host then bring it back to the device for reduction

Oregon State
University
Computer Graphics

mjb — June 14, 2021

Reduction Takes Place Within a Single Work-Group
Each work-item is run by a single thread

Thread #0: Thread #0: Thread #0:
prods[O] +=prods[1]; | prods[O] +=prods[2]; | prods[O] += prods[4];
Thread #2: Oﬁse; - ‘7‘}
prods[2] += prods[3]; mask =/,
Thread #4: Thread #4:
prods[4] +=prods[5]; | prods[4]+= prods[6]; Kernel
Thread #6: Oﬁsekt - g —_—
prods[6] += prods[7 ; mask = 9, =
offset =1, ‘ cin ant Memory
mask = 1; ;
A work-group consisting of numltems work-items k@roup
can be reduced to a sum in log,(numltems) WorkGfoup
steps. In this example, numltems=8. WorkGrpu
/"— —
. : . T Shared Memo
The reduction begins with the individual products C\ ,P rx\

in prods[0] .. prods[7].

The final sum will end up in prods[0], which will
then be copied into dC[wgNum].

I

\

Workj
Item

Wo:}- Wo r&-
Item

Ite

Klowsy
ajeAld

Oregon State
University
Computer Graphics

Kioway
ajeAld
Kiowas
ajeAld

mjb — June 14, 2021

A Review of Bitmasks

Remember Truth Tables?

F F T T
& F &T & F T
=F = =F =T
Or, with Bits:
0 0 1 1
& 0 1 0 1
=0 =0 =0 = 1
Or, with Multiple Bits:
000 001 010 011 100 101
& 011 & 011 & 011 & 011 & 011 & 011
=000 = 001 =010 =011 =000 = 001

e

Oregon State
University

Computer Graphics

mjb — June 14, 2021

Reduction Takes Place in a Single Work-Group

Each work-item is run by a single thread

Thread #0: Thread #0: Thread #0:

prods[O] +=prods[1]; | prods[O] +=prods[2]; | prods[O] += prods[4];

Thread #2: oﬁsei;t f 471

prods[2] += prods][3]; mask =1,

Thread #4: Thread #4: kernel void

prods[4] +=prods[5]; | prods[4]+= prods[6]; ArrayMultReduce(...)

_ offset = 2: ?nt gid = get_global__id(0);

Thread #6: mask = 3. int numltems = get_local_size(0);

prods[6] += prods[7 ; ’ int thum = get_local_id(0); // thread number
offset = 1; int wgNum = get_group_id(0); // work-group number
mask = 1;

prods[tnum] = dA[gid] * dBJ[gid];

numltems = 8; // all threads execute this code simultaneously:
for(int offset = 1; offset < numltems; offset *= 2)
{
: . int mask = 2*offset - 1;
Anding bits— barrier(CLK_LOCAL_MEM_FENCE); // wait for all threads to get here
if((tnuTn’& mask) ==0) /1 bit-by-bit and’ing tells us which
{ // threads need to do work now
z prods S C } prods[tnum] += prods[thum + offset];
e
|
e
Oregon State barrier(CLK_LOCAL_MEM_FENCE);
University if(thum==0)

Computer Graphics

dC[wgNum] = prods[O |;

10
And, Finally, in your Host Program

Wait(cmdQueue);
double time0 = omp_get wtime();

status = clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize, localWorkSize,
0, NULL, NULL);
PrintCLError(status, "clEnqueueNDRangeKernel failed: ");

Wait(cmdQueue);
double time1 = omp_get_wtime();

status = clEnqueueReadBuffer(cmdQueue, dC, CL_TRUE, 0, numWorkGroups*sizeof(float), hC,
0, NULL, NULL);

PrintCLError(status, "clEnqueueReadBufferl failed: ");

Wait(cmdQueue);

float sum =0.;
for(inti = 0; i < numWorkgroups; i++)

{
}

sum +=hCJ[i];

A
Oregon State
University

Computer Graphics
mjb — June 14, 2021

11
Reduction Performance

Work-Group Size = 32

0 50 100 150 200 250 300

GigaNumbers Multiplied and Reduced Per Second)

Array Size (MegaNumbers)

e
% jaé
BN
Oregon State
1
Computer Graphics A A

mjb — June 14, 2021

