OpenCL Events

Oregon State
University
Mike Bailey

mjb@cs.oregonstate.edu

—_—

Ress || Esoctn || wee || virsa
Buflor4C || Marnwd | | Bue 0B | | Busfrdn

—_—
Dregon State:
University
Computer Graphics
o op - s 203
From the OpenCL Notes: 3

11. Enqueue the Kernel Object for Execution

size_t globalWorkSize[3] =
] =

NUM_ELEMENTS, 1,1};
size_t localWorkSize[3 5

{
{LOCAL_SIZE, 1,1}

status = dQ kernel, 1, NULL, ize, ize, 0, NULL, NULL);

event that will be thrown when this
kernel is finished executing

status = clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize, localWorkSize, 0, NULL, NULL);

— # events to wait for before this event wait
kernel is allowed to execute list

Read || Execute || Write write
Buffer dC || Kemel | | Buffer d8 | | Buffer dA

Oregon State

University
Computer Graphics

OpenCL Events 2

An event is an object that communicates the status of OpenCL commands

Whopp-a, whopp-a

)

Read Execute Write Write
BufferdC Kernel Buffer dB BufferdA

)

Event

University
Computer Graphics

mb __ March13,2023

b March13, 2023

Creating an Event 4

event that will be thrown when this
kernel is finished executing

\

cl_event waitKernelA, waitKernel B, waitKernelC;

status = clEnqueueNDRangeKerel(cmdQueue, kemel, 1, NULL, i ize, 0, NULL,)

event(s) to wait for before this
kernel is allowed to execute

——
Read Exacute Write Write
Buffer dC Kemel Buffer d8 | | Buffer dA

State

University
Computer Graphics
i - Mareh1, 2023

ng for Events from Previously-Executed Kernels 5

cl_event wai , waif B,

o event that will be thrown when this
ol_event dependenciesAB 2; kernel is finished executing
dependenciesAB[0] = waitKernelA;
dependenciesAB[1] = waitKernelB;

status = clEnqueueNDRangeKernel(cmdQueue, kernelC, 1, NULL,

3 ize, 2, , NULL);
—

event(s) to wait for before this
kernel is allowed to execute

University
Computer Graphics
mp - barchi3, 2023

Creating an Execution Graph Structure 6

cl_event waitKernelA, waitKernel B, waitKernelC;
event that will be thrown when this
kernel is finished executing

aitKernelB; \

status = clEnqueueNDRangeKernel(cmdQueue, kernelC, 1, NULL, 2, 3 3

—

cl_event dependenciesAB[2];

(0]
dependenciesAB[1]

event(s) to wait for before this
kernel is allowed to execute

Dregon State
University
Computer Graphics

mb __ March13,2023

Creating the Full Execution Graph Structure 7

cl_event waitKernel B,

cl_event dependenciesAB] 21;
dependenciesAB[0] = waitKernelA;
dependenciesAB] 1] = waitKernelB;

cl_event dependenciesCD[2];
dependenciesCD| 0] = waitKernelC;
dependenciesCD| 1] = waitKernelD;

status = clEnqueueNDRangeKerel(cmdQueue, kemelA, 1, NULL, ize, 0, NULL, 8wai %
status = clEnqueueNDRangeKernel(cmdQueue, kernel UL, 0, NULL, %
status = clEnqueueNDRangeKernel(cmdQue:
status = clEnqueueNDRangeKemel(cmdQueue, kemelD, 1, NULL, i i)
status = clEnqueueNDRangeKernel(cmdQueue, kenel, 1, NULL, 2, NULL);

Oregon State

University
Computer Graphics
mb . Maroht3, 2023

Waiting for One Event 8

cl_event waitKernelA, waitKernel B.

status = clEnqueueNDRangeKernel(cmdQueue, kemelC, 1, NULL, ize, ize, 1, NULL);
—

event(s) to wait for

Dregon

University
Computer Graphics
o —_ March13, 2023

Placing a Barrier in the Command Queue 9

status = clEnqueueBarrier(cmdQueue); |

Note: this cannot throw its own event

This does not complete until all commands enqueued before it have completed.

Placing an Event Marker in the Command Queue 10

cl_event waitMarker;

status = clEnqueueMarker(cmdQueue, &waitMarker);

Note: this can throw its own event

This does not complete until all commands enqueued before it have completed.

This is just like a barrier, but it can throw an event to be waited for.

DregonState

University
Computer Graphics
i - Mareh1, 2023

e,
\ Read Execute Write | ‘Write
Buffer dC Kemet Bufler d8 | | BufferdA
University
Computer Graphics
o — e 202
Waiting for Events Without Enqueuing Another Command "

status = clWaitForEvents(2, dependencies); ‘
—

event(s) to wait for

This blocks until the specified events are thrown, so use it carefully!

versity
Computer Graphics
mp - barchi3, 2023

I Like Synchronizing Things This Way 12

/I wait until all queued tasks have taken place:

void
Wait(c|_command_queue queue)

cl_event wait;
cl_int status;

status = clEnqueueMarker(queue, &wait);
if(status != CL_SUCCESS)
fprintf(stderr, "Wait: clEnqueueMarker failed\n");

status = clWaitForEvents(1, &wait); /I blocks until everything is done!
if(status != CL_SUCCESS)
fprintf(stderr, "Wait: clWaitForEvents failed\n");

l-! Call this before starting the timer, before ending the timer, and before retrieving
data from an array computed in an OpenCL program.

Dreg|
University
Computer Graphics

mb __ March13,2023

Getting Event Statuses Without Blocking 13

CL_EVENT_COMMAND_EXECUTION_STATUS

Specify one of these

cl_int eventStatus; |

status = ciGetEventinfo(waitkernelC, CL_EVENT_COMMAND_EXECUTION_STATUS, sizeof(cl_int),
&eventStatus, NULL); 4

CL_EVENT_COMMAND_EXECUTION_STATUS
returns one of these

l cl_intis what type
CL_EVENT_COMMAND_EXECUTION_STATUS

CL_QUEUED retums

CL_SUBMITTED

CL_RUNNING

CL_COMPLETE

Note that this a nice way to check on event statuses without blocking. Thus, you could put
this in a loop and go get some other work done in between calls.

0y

Univers
Computer Graphics
mh —_ Marcht3, 2023

