
mjb – March 27, 2021

1

Computer Graphics

Looking at OpenCL Assembly Code

opencl.assembly.pptx

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – March 27, 2021

2

Computer Graphics

size_t size;
status = clGetProgramInfo(Program, CL_PROGRAM_BINARY_SIZES, sizeof(size_t), &size, NULL);
PrintCLError(status, "clGetProgramInfo (1):");

unsigned char * binary = new unsigned char [size];
status = clGetProgramInfo(Program, CL_PROGRAM_BINARIES, size, &binary, NULL);
PrintCLError(status, "clGetProgramInfo (2):");

FILE * fpbin = fopen(CL_BINARY_NAME, "wb");
if(fpbin == NULL)
{

fprintf(stderr, "Cannot create '%s'\n", CL_BINARY_NAME);
}
else
{

fwrite(binary, 1, size, fpbin);
fclose(fpbin);

}
delete [] binary;

How to Extract the OpenCL Assembly Language

This binary can then be used in a call to clCreateProgramWithBinary()

mjb – March 27, 2021

3

Computer Graphics

typedef float4 point;
typedef float4 vector;
typedef float4 color;
typedef float4 sphere;

constant float4 G = (float4) (0., -9.8, 0., 0.);
constant float DT = 0.1;
constant sphere Sphere1 = (sphere)(-100., -800., 0., 600.);

particles.cl, I

mjb – March 27, 2021

4

Computer Graphics

kernel
void
Particle(global point * dPobj, global vector * dVel, global color * dCobj)
{

int gid = get_global_id(0); // particle #

point p = dPobj[gid];
vector v = dVel[gid];

point pp = p + v*DT + .5*DT*DT*G; // p’
vector vp = v + G*DT; // v’

dPobj[gid] = pp;
dVel[gid] = vp;

}

particles.cl, II

mjb – March 27, 2021

5

Computer Graphics

vector
Bounce(vector in, vector n)
{

n.w = 0.;
n = normalize(n);
vector out = in - 2. * n * dot(in.xyz, n.xyz);
out.w = 0.;
return out;

}

vector
BounceSphere(point p, vector v, sphere s)
{

vector n;
n.xyz = fast_normalize(p.xyz - s.xyz);
n.w = 0.;
return Bounce(in, n);

}

particles.cl, III

= “reflect” function

mjb – March 27, 2021

6

Computer Graphics

ld.global.v4.f32 {%f188, %f189, %f190, %f191}, [%r1]; // load dPobj[gid]
ld.global.v4.f32 {%f156, %f157, %f158, %f159}, [%r2]; // load dVel[gid]

mov.f32 %f17, 0f3DCCCCCD; // put DT (a constant) → register f17

fma.rn.f32 %f248, %f156, %f17, %f188; // (p + v*DT).x → f248
fma.rn.f32 %f249, %f157, %f17, %f189; // (p + v*DT).y → f249
fma.rn.f32 %f250, %f158, %f17, %f190; // (p + v*DT).z → f250

mov.f32 %f18, 0fBD48B43B; // .5 * G.y * DT * DT (a constant) → f18
mov.f32 %f19, 0f00000000; // 0., for .x and .z (a constant) → f19

add.f32 %f256, %f248, %f19; // (p + v*DT).x + 0. → f256
add.f32 %f257, %f249, %f18; // (p + v*DT).y + .5 * G.y * DT * DT → f257
add.f32 %f258, %f250, %f19; // (p + v*DT).z + 0. → f258

mov.f32 %f20, 0fBF7AE148; // G.y * DT (a constant) → f20

add.f32 %f264, %f156, %f19; // v.x + 0. → f264
add.f32 %f265, %f157, %f20; // v.y + G.y * DT → f265
add.f32 %f266, %f158, %f19; // v.z + 0. → f266

NVIDIA OpenCL Assembly Language Sample

FMA = “Fused Multiply-Add”

mjb – March 27, 2021

7

Computer Graphics

Fused Multiply-Add

Many scientific and engineering computations take the form:
D = A + (B*C);

A “normal” multiply-add compilation would handle this as:
tmp = B*C;
D = A + tmp;

A “fused” multiply-add does it all at once, that is, when the low-order bits of B*C
are ready, they are immediately added into the low-order bits of A at the same
time that the higher-order bits of B*C are being multiplied.

Consider a Base 10 example: 789 + (123*456)

123
x 456

738
615

492
+ 789

56,877
Can start adding the 9 the moment the 8 is produced!

Note: In the lower bits of the result, “Normal” A+(B*C) ≠ “FMA” A+(B*C)

Something like:
Sum = Sum + (B*C);

would also be suitable to be
implemented as an FMA.

mjb – March 27, 2021

8

Computer Graphics

• The points, vectors, and colors were typedef’ed as float4’s, but the compiler realized that they
were being used only as float3’s and so didn’t bother with the 4th element.

• The floatn’s were not SIMD’ed. (We actually knew this already, since NVIDIA doesn’t support
SIMD operations in their GPUs.) There is still an advantage in coding this way, even if just for
readability.

• The function calls were all in-lined. (This makes sense – the OpenCL spec says “no recursion”,
which implies “no stack”, which would make function calls difficult.)

• Me defining G, DT, and Sphere1 as constant memory types was a mistake. It got the correct
results, but the compiler didn’t take advantage of them being constants. Changing them to type
const threw compiler errors because of their global scope. Changing them to const and moving
them into the body of the kernel function Particle did result in good compiler optimizations.

• The sqrt(x2+y2+z2) assembly code is amazingly convoluted. I suspect it is an issue of
maintaining highest precision. Use fast_sqrt(), fast_normalize(), and fast_length() when you
can. Usually computer graphics doesn’t need the full precision of sqrt().

• The compiler did not do a good job with expressions-in-common. I had really hoped it would
figure out that detecting if a point was in a sphere and determining the unitized surface normal at
that point were the same operation, but it didn’t.

• There is a 4-argument Fused-Multiply-Add instruction in hardware to perform D = A + (B*C) in
one instruction in hardware. The compiler took great advantage of it.

Things Learned from Examining OpenCL Assembly Language

