The Message Passing Interface (MPI):
Parallelism on Distributed CPUs

http://mpi-forum.org
https://www.open-mpi.org/

Oregon State
University
Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0

International License

Network

ot

a*s

Oregon State
University
Computer Graphics

g

g

Memory

Memory

CPU

CPU

mpi.ppix

mjb — April 25, 2023

=

Why Two URLs?

http://mpi-forum.org

This is the definitive reference for the MPI standard. Go here if you
want to read the official specification, which, BTW, continues to evolve.

https://www.open-mpi.org/

This consortium formed later. This is the open source version of MPI.

If you want to start using MPI, | recommend you look here.
This is the MPI that the COE systems use

ot

https://www.open-mpi.org/doc/v4.0/

This URL is also really good — it is a link to all of the MPI man pages

a*s

Oregon State
University
Computer Graphics

mjb — April 25, 2023

The Open MPI Consortium

abssft AMDD &= ARM

["
0 L =z Chelsiofgk otlrar]rs Bl
- BROADCOM BUL Cumrv:::z:l::ns c | sco '“_"I".:I' :!..;-q._

raciosss. (coverity EHENN ¥ facebook

LA CROSSE.

Hochschule %
fee) % : - Hochschule Esslingen
FU]ITSU fSL::L:—tegcuher SEpehTRs HLR[s @& [_,l.{_”T'P:r,.“"‘_}= S
. ; pa)
A - /j =y
(Cosia— (intel .iLI naro - Los Alamos
IcLur- - ’ ’
= >, OAK r)
M myricos <X RIDGE pou e ORACLE
MQH?{LQE NVIDIA. National Laboratory RS Wl
B R Av) o ADVANCED RESEARCHCOMPUTING W/ 477
RIST Laboratories frs e
mib — April 25, 2023
MPI: The Basic Idea 4
Network
Memory Memory
CPU . CPU

Programs on different CPUs coordinate computations by
passing messages between each other

Note: Each CPU in the MPI “cluster” must be prepared ahead of time by
having the MPI server code installed on it. Each MPI CPU must also have an

integer ID assigned to it (called its rank).

Oreg,
University

Computer Graphics
mjb — April 25, 2023

This paradigm is how modern supercomputers work! 5

Oregon State
University
Computer Graphics
mjb — April 25, 2023

How to SSH to the COE MPI Cluster 6

ssh over to an MPI submission machine --
/ submit-a and submit-b will also work

flip3 151% ssh submit-c.hpc.engr.oregonstate.edu

submit-c 142% module load slurm
submit-c 143% module load openmpi

Type these two lines right away
to set your paths correctly

BTW, you can find out more about the COE cluster here:
https://it.engineering.oreqonstate.edu/hpc

“The College of Engineering HPC cluster is a heterogeneous mix of 180 servers providing
nearly 4000 CPU cores, over 140 GPUs, and over 36 TB total RAM. The systems

are connected via gigabit ethernet, and most of the latest servers also utilize a Mellanox
EDR InfiniBand network connection. The cluster also has access to 100TB global
scratch from the College of Engineering's Dell/EMC Isilon enterprise storage. The CoE
HPC Cluster is rated at over 900 peak TFLOPS (double-precision).”

e —

o

mjb — April 25, 2023

Compiling and Running

‘mpicc -0 program program.c. . . ‘ —C

or

‘mpic++ -0 program program.cpp. . . ‘ «— C++

| All distributed processors execute

mpiexec -mca bll selficp -np 4 program *‘_ the same program at the same time

of processors to use

Warning — use mpic++ and mpiexec !

Don’t use g++ and don’t run by just typing the name of the executable!
€
Oregon State
University
Computer Graphics

mjb — April 25, 2023

Running with a bash Batch Script

submit.bash:

#!/bin/bash

#SBATCH -J AutoCorr
#SBATCH -A cs475-575
#SBATCH -p classmpites’u\ This isth(-? partition name that we use for our class
#SBATCH -N4 # number of nodes | ienesng you progra. e cassmpiinal o
#SBATCH -n4 # number of tasks

#SBATCH --constraint=ib

#SBATCH -0 autocorr.out

#SBATCH -e autocorr.err

#SBATCH --mail-type=END,FAIL

#SBATCH --mail-user=joeparallel@cs.oregonstate.edu

module load openmpi

mpic++ autocorr.cpp -0 autocorr -lm

mpiexec -mca btl self,tcp -np 4 ./autocorr

submit-c 143% sbatch submit.bash
Submitted batch job 258759

Oregon State
University
Computer Graphics
mjb — April 25, 2023

What is the Difference Between the Partitions
classmpitest and classmpifinal?

classmpitest lets your program get into the system sooner, but it might
be running alongside other jobs, so its performance might suffer. But,
you don't care because you are just compiling and debugging, not
taking performance numbers for your report.

classmpifinal makes your program wait in line until it can get dedicated
resources so that you get performance results that are much more
representative of what the machines can do, and thus are worthy to be
listed in your report.

Oregon State
University
Computer Graphics
mjb — April 25, 2023

Auto-Notifications via Email 10

#SBATCH --mail-user=joeparallel@oregonstate.edu

You don’t have to ask for email notification, but i?you do, please,
please, please be sure you get your email address right!

The IT people are getting real tired of fielding the bounced emails
when people spell their own email address wrong.

Oregon State
University
Computer Graphics
mjb — April 25, 2023

Use slurm’s scancel if your Job Needs to Be Killed 1

submit-c 143% sbatch submit.bash
Submitted batch jé

submit-c 144% scan

Oregon State
University
Computer Graphics

mjb — April 25, 2023

Setting Up and Finishing MPI 12

#include <mpi.h>
int
main(int argc, char *argv[])

MPI_Init(&argc, &argv);

MPI_Finalize();
return O;

You don’t need to process command line arguments if you don’t need to.
You can also call it as:

MPI_Init(NULL, NULL);

Oregon State
University
Computer Graphics

mjb — April 25, 2023

MPI Follows a Single-Program-Multiple-Data (SPMD) Model ~ '°

A communicator is a collection of CPUs that are capable of sending messages to each other

Oh, look, a
communicator
of deer!

Oh, look, a
communicator
of turkeys!

This requires MPI server
code getting installed on
all those CPUs. Only an
administrator can do this.

Getting information about our place in the communicator:

int numCPUs; /[total # of cpus involved
int me; /l which one | am

MPI_Comm_size(MPI_COMM_WORLD, &umCPUs);

MPI_Comm_rank(MPI_COMM_WORLD, &me); \

AN

Size, i.e., how many altogether?

(rn
3*5 It is then each CPU'’s job to figure out .) 5
Oregonstate | what piece of the overall problem it is Rank; i.e., which one am I
chﬁf,rSC’,mecs responsible for and then go do it.

mjb — April 25, 2023

. 14
A First Test of MPI
#include <stdio.h>
#include <math.h>
#include <mpi.h>
#define BOSS 0
int
main(int argc, char *argv[])
MPI_Init(&argc, &argv);
int numCPUs; // total # of cpus involved
int me; /I which one | am

MPI_Comm_size(MPI_COMM_WORLD, &umCPUs);
MPI_Comm_rank(MPI_COMM_WORLD, &me);

if(me ==BOSS)

fprintf(stderr, "Rank %d says that we have a Communicator of size %d\n", BOSS, numCPUs);
else

fprintf(stderr, "Welcome from Rank %d\n", me);

MPI_Finalize();
return 0;

}

Computer Graphics

mjb — April 25, 2023

15

submit-c 165% mpiexec -np 16 ./ffirst
Welcome from Rank 13

Welcome from Rank 15

Welcome from Rank 3

Welcome from Rank 7

Welcome from Rank 5

Welcome from Rank 8

Welcome from Rank 9

Welcome from Rank 11

Rank 0 says that we have a Communicator of size 16
Welcome from Rank 1

Welcome from Rank 12

Welcome from Rank 14

Welcome from Rank 6

Welcome from Rank 2

Welcome from Rank 10

Welcome from Rank 4

submit-c 166% mpiexec -np 16 ./ffirst
Welcome from Rank 1

Welcome from Rank 5

Welcome from Rank 7

Welcome from Rank 9

Welcome from Rank 11

Welcome from Rank 13

Welcome from Rank 15

Rank 0 says that we have a Communicator of size 16
Welcome from Rank 2

Welcome from Rank 3

Welcome from Rank 4

Welcome from Rank 6

Welcome from Rank 8

Welcome from Rank 12

Welcome from Rank 14

Welcome from Rank 10

submit-c 167% mpiexec -np 16 ./ffirst
Welcome from Rank 9

Welcome from Rank 11

Welcome from Rank 13

Welcome from Rank 7

Welcome from Rank 1

Welcome from Rank 3

Welcome from Rank 10

Welcome from Rank 15

Welcome from Rank 4

Welcome from Rank 5

Rank 0 says that we have a Communicator of size 16
Welcome from Rank 2

Welcome from Rank 6

Welcome from Rank 8

Welcome from Rank 14

C{ Welcome from Rank 12

submit-c 168% mpiexec -np 16 ./ffirst
Welcome from Rank 13

Welcome from Rank 15

Welcome from Rank 7

Welcome from Rank 3

Welcome from Rank 5

Welcome from Rank 9

Welcome from Rank 11

Welcome from Rank 1

Welcome from Rank 12

Welcome from Rank 14

Welcome from Rank 4

Welcome from Rank 2

Rank 0 says that we have a Communicator of size 16
Welcome from Rank 8

Welcome from Rank 10

Welcome from Rank 6

ril 25, 2023

16

So, we have a group (a “communicator”) of distributed processors.
How do they communicate about what work they are supposed to do?

Where am |?
What am | supposed to be doing?
Hello? Is anyone listening?

Who am I?

(w]) (m] (w] (]

Oregon State
University
Computer Graphics

mjb — April 25, 2023

A Good Place to Start: 7

MPI Broadcasting

MPI_Bcast(array, count, type, src, MPI_COMM_WORLD); |

[\

Address of the data

to send from if you MPI CHAR rank of the CPU
are the src node; # elements MPI INT doing the sending
MPI_LONG
Address of the data MPI FLOAT
to receive into if you MP| DOUBLE
are not -
Broadcast

<——— src node

B |[<—— # srcnodes

Oregon State Both the sender and receivers need to execute MPI_Bcast —

c University there is no separate receive function
omputer Graphics

mjb — April 25, 2023

MPI Broadcast Example 18

This is our heat transfer equation

i+l

from before. Clearly, every CPU 2 At

will need to know this value: (Ax)
int numCPUs;
int me;
float k_over_rho_c; /I the BOSS node will know this value, the others won't (yet)
#define BOSS 0
MPI_Comm_size(MPI_COMM_WORLD, &nhumCPUs); // how many are in this communicator
MPI_Comm_rank(MPI_COMM_WORLD, &me); /I which one am 1?

if(me == BOSS)¢ \1
{

| am the BOSS: this identifies this call as a send
<<read k_over_rho_c from the data file >> &~
}

MPI_Bcast(&k_over_rho_c, 1, MPI_FLOAT, BOSS, MPI_COMM_WORLD); /I send if BOSS, and receive if not

Broadcast
src node
Oregon State
University
Computer Graphics [| <————— # src nodes

mjb — April 25, 2023

Confused? Look at this Diagram 19

Broadcast

Both the sender and receivers need to execute MPI_Bcast —
there is no separate receive function

(w) (=] [m]

| Executable code | k_over_rho_c (set) |

Node #BOSS:
MPI_Bcas'@(_over_rhob, MPI_FLOAT, BOSS, MPI_COMM_WORLD); /I send if BOSS, and receive if not |

\ All Nodes that are not #BOSS:

| Executable\%q\l\ k_over_rho_c (being set)
Executable co\(h:\\{:\ k_over_rho_c (being set)		
Executable code \I\\\ k_over_rho_c (being set)		
Executable code	X k_over_rho_c (being set)	

ot

Oregon State
University
Computer Graphics

mjb - April 25, 2023

How Does this Work? 20

Think Star Trek Wormholes!

AT

Oregon State

University

Computer Graphics
mjb — April 25, 2023

10

Sending Data from One Source CPU to Just One Destination CPU 21

| MPI_Send(array, numToSend, type, dst, tag, MP|_COMM_WORLD); |

address of data to send fr

MPI CHAR rank of the CPU An integer or character to
eleme.nt‘s MPIINT to send to differentiate this transmission
(note: this is the number 157 onG from any other transmission.
of elements, not the MPI_ FLOAT | like to use chars.
number of bytes!) MPI_DOUBLE
Rules:

» One message from a specific src to a specific dst cannot overtake a previous message from the
same src to the same dsst.

* MPI_Send() blocks until the transfer is far enough along that array can be destroyed or re-used.

* There are no guarantees on order from different src’s .

w

Ore; gon S}ale
University src node E—)@ dst node
Computer Graphics

mjb — April 25, 2023

Receiving Data in a Destination CPU from a Source CPU 22

MPI_Recv(array, maxCanReceive, type, src, tag, MPI_COMM_WORLD, &status); |

address of data to receive into \
Type = MPI_Status

MPI_CHAR Rank of the CPU An integer or character to
elements we can MPL_INT we are expecting differentiate what transmission we
receive, at most MPI_LONG togeta are looking for with this call (be
MPI_FLOAT transmission from sure this matches what the sender
MPI_DOUBLE is sending!). | like to use chars.

Rules:
« The receiver blocks waiting for data that matches what it declares to be looking for

» One message from a specific src to a specific dst cannot overtake a previous message from
the same src to the same dst

* There are no guarantees on the order from different src’s

* The order from different src’s could be implied in the tag

g
% « status is type MPI_Status — the “&status” can be replaced with MPI_STATUS_IGNORE

Oregon State
University src node E—)@ dst node
Computer Graphics

mjb — April 25, 2023

11

Example 23

Remember, this identical code runs on all CPUs:

int numCPUs;

int me;

#define MYDATA_SIZE 128
char mydata] MYDATA_SIZE |;
#define BOSS 0

MPI_Comm_size(MPI_COMM_WORLD, &numCPUs);
MPI_Comm_rank(MPI_COMM_WORLD, &me);

if(me == BOSS /I the prima
() P v Be sure the receiving tag matches

{ -
fo(int dst = 0; dst < numCPUs; dst++J)) the sending tag

char *InputData = “Hello, Beavers!”;
MPI_Send(InputData, strlen(InputData)+1, MPI_CHAR ‘B’, MPI_COMM_WORLD);

} \
} The tag to label this

} N o ;
ransmission with
else /I a secondary The tag to expect

MPI_Recv(myData, MYDATA_SIZE, MPI_CHAR, BOSS, ‘B’, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf(“ ‘%s’ from rank # %d\n”, in, me);

>
{ You are highly discouraged from sending to yourself. Because both the send and receive
Con are capable of blocking, the result could be deadlock.

2023

Look at this Diagram 24

sre node E]—)[I] dst node

| Executable code | Input' Data

if(dst 1= BOSS)

{
char *InputData Hello, Beavers!”;
MPI_Ser(d(InputData Jstrlen(InputData)+1, MPLCHA, MPI_COMM_WORLD),
‘{ Destinations '—

else
{
0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
| Executable code | \'\‘ MyData |
d l | Executable code | MyData |
> | Executable code | > MmyData |
Oregon State Y
Universil
Computer th};phics | Executable code | \MyData |

mjb — April 25, 2023

How does MPI let the Sender perform an MPI_Send() even if 25

the Receivers are not ready to MPI_Recv()?

Sender Receiver

WP sondt) | wPLRecv()

¥

MPI N MPI
Transmission Transmission
Buffer Buffer

MPI_Send() blocks until the transfer is far enough along that the array
can be destroyed or re-used.

Oregon State
University
Computer Graphics
mjb — April 25, 2023

26

sronode (M }——(m] dstnode Another Example

| You typically don’t send the entire workload to each dst — you just send part of it, like this:

#define NUMELEMENTS 7?7?77
int numCPUs;

int me;

#define BOSS 0

MPI_Comm_size(MPI_COMM_WORLD, &humCPUs);
MPI_Comm_rank(MPI_COMM_WORLD, &me);

int PPSize = NUMELEMENTS / numCPUs; /| per-processor data size -- assuming it comes out evenly
float *myData = new float [PPSize];

if(lme == BOSS)) / the sender
{
float *InputData = new float [NUMELEMENTS J;
<< read the full input data into InputData from disk >>
for(int dst = 0; dst < numCPUs; dst++)
{

if(dst 1= BOSS) The address of node dst's share of the data to send

MPI_Send(&nputData[dst*PPSize], PPSize, MPI_FLOAT, dst, 0, MP|_COMM_WORLD);

else I/ a receiver. Each dst node will store its data in this array

MPI_Recv(myData, PPSize, MPI_FLOAT, BOSS, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
/I do something with this subset of the data

13

27

srenode [M }—— W] ostnode Another Example

| You typically don’t send the entire workload to each dst — you just send part of it, like this:

\InputiDat? i/
_[| 7

| Executable code | N

if(dst1=BOSS)

MPI_Sefid(&/nputDatafdst*PPSize[PPSize, MPI_FLOAI_COMM_WORLD);
/1))
~

Destination nodes
4 Source node
4 4

PPSize, MPI_FLOAT, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
// do something-withefis subset of the data

| Executable code | \’\s MyData |
Executable code MyData

| | I |

|

|

(et
= | Executable code | MyData
B
Oregon State | Executable code | N MyData
University
Computer Graphics

mjb — April 25, 2023

In Distributed Computing, You Often Hear About These Design Patterns28

Broadcast

Gather

(=] (2] (a] (8]
E==s)

Oregon State
University
Computer Graphics

mjb — April 25, 2023

14

Scatter and Gather Usually Go Together 29

Scatter

Gather

‘ Note surprisingly, this is referred to as Scatter/Gather

Oregon State
University
Computer Graphics
mjb — April 25, 2023

MPI Scatter 30

Take a data array, break it into ~equal portions, and send it to each CPU

MPI_Scatter(snd_array, snd_count, snd_type, rcv_array, rcv_count, rev_type, src, MPI_COMM_WORLD) |

Local array to store \\

The total large array this processor’s This is who is doing
to split up iece in the sending —
MPI_CHAR P © MPLCHAR guenone eise is
MPI_INT # elements to receive MPL_INT receiving
#elements tosend yipI"| ONG per-processor MPI_LONG
per-processor MPI_FLOAT MPI_FLOAT
MPI_DOUBLE MPI_DOUBLE

(o) (o)

Scatter
Oregon State Both the sender and receivers need to execute MPI_Scatter.
University There is no separate receive function
Computer Graphics

mjb — April 25, 2023

15

MPI Gather 31

MPI_Gather(snd_array, snd_count, snd_type, rcv_array, rcv_count, rcv_type, dst, MPI_COMM_WORLD)

/ / Local array that this \ \
The total large array This is who is doing

processor is

to put the pieces MPI_CHAR sending back MPI_CHAR the receiving —
back into MPL_INT MPL_INT everyone else is
MPI_LONG #elements tosend MPI_LONG sending
elements to return MPI_FLOAT back per-processor MPI_FLOAT
per-processor MPI_DOUBLE MPI_DOUBLE

(=] (2] (8] (2]
E==s)

d Gather
a.*i
Oregon State Both the sender and receivers need to execute MPI_Gather.
Cogx‘{;“c’gpms There is no separate receive function .

mjb — April 25, 2023

Remember This? It’'s Baaaaaack as a complete 32

Scatter/Gather Example

M TN IR
TR

CPU #0 CPU #1 CPU #2 CPU #3

The Compute : Communicate Ratio still applies, except that it is even more important now
because there is much more overhead in the Communicate portion.

This pattern of breaking a big problem up into pieces, sending them to different CPUs,
computing on the pieces, and getting the results back is very common. That's why MPI has
its own scatter and gather functions.

dopn

E.*E
Oregon State
University
Computer Graphics
mjb — April 25, 2023

16

heat.cpp, |

33

#include <stdio.h>

#include <math.h>

#include <mpi.h>

const float RHO = 8050.;

const float C = 0.466;

const float K =20.;

float k_over_rho_c = K/ (RHO*C); /I units of m"2/sec NOTE: this cannot be a const!

/I K/ (RHO*C) = 5.33x10"-6 m”2/sec

const float DX = 1.0;

const float DT = 1.0;

#define BOSS 0

#define NUMELEMENTS (8*1024*1024)

#define NUM_TIME_STEPS 4

#define DEBUG false

float * NextTemps; /I per-processor array to hold computer next-values

int NumCpus; // total # of cpus involved

int PPSize; /I per-processor local array size

float * PPTemps; /I per-processor local array temperature data

float * TempData; /I the overall NUMELEMENTS-big temperature data

void DoOneTimeStep(int);
COmpurer Grapics

mib — April 25, 2023
heat.cpp, Il 34
int
main(int argc, char *argv[])
{
MPI_Init(&argc, &argv);
int me; /I which one | am

MPI_Comm_size(MPI_COMM_WORLD, &NumCpus);
MPI_Comm_rank(MPI_COMM_WORLD, &me);

/I decide how much data to send to each processor:

PPSize = NUMELEMENTS / NumCpus; /I assuming it comes out evenly
PPTemps = new float [PPSize]; // all processors now have this uninitialized Local array
NextTemps = new float [PPSize]; // all processors now have this uninitialized local array too

/I broadcast the constant:
MPI_Bcast((void *)&k_over_rho_c, 1, MPI_FLOAT, BOSS, MPI_COMM_WORLD);

Broadcast

Oregon State
University
Computer Graphics

mjb — April 25, 2023

17

heat.cpp, Il 35

if(l me == BOSS) // this is the data-creator

{
TempData = new float NUMELEMENTS];
for(inti=0; i < NUMELEMENTS; i++)
TempData[i]= 0.;
TempData]NUMELEMENTS/2] = 100,
}

MPI_Scatter(TempData, PPSize, MPI_FLOAT, PPTemps, PPSize, MPI_FLOAT,
BOSS, MPI_COMM_WORLD);

a*s

Oregon State
University
Computer Graphics
mjb — April 25, 2023

heat.cpp, IV 36

/I all the PPTemps arrays have now been filled
/I do the time steps:

double time0 = MPI_Wtime();

for(int steps = 0; steps < NUM_TIME_STEPS; steps++)
{
/I do the computation for one time step:
DoOneTimeStep(me);

/I ask for all the data:
#ifdef WANT_EACH_TIME_STEPS_DATA
MPI_Gather(PPTemps, PPSize, MPI_FLOAT, TempData, PPSize, MPI_FLOAT,
BOSS, MPI_COMM_WORLD);
#endif

}

#ifndef WANT_EACH_TIME_STEPS_DATA
MPI_Gather(PPTemps, PPSize, MPI_FLOAT, TempData, PPSize, MPI_FLOAT,
BOSS, MPI_COMM_WORLD);

#endif
T X

double time1 = MPI_Wtime();

dopn

a*s

Oregon State
University
Computer Graphics

mjb — April 25, 2023

18

heat.cpp, V 37

if(me == BOSS)
{

double seconds = time1 - time0;
double performance =
(double)NUM_TIME_STEPS * (double)NUMELEMENTS / seconds / 1000000.;
/I mega-elements computed per second
fprintf(stderr, "%3d, %10d, %8.2I\n", NumCpus, NUMELEMENTS, performance);

}

MPI_Finalize();
return 0;

Oregon State
University
Computer Graphics
mjb — April 25, 2023

DoOneTimeStep, | 38

/I read from PerProcessorData[], write into NextTemps|]

void Tix Ti Ty
DoOneTimeStep(int me)
{
MPI_Status status; |
Processor #0 Processor #1 Processor #2 Processor #3
/I send out the left and right end values:
/I (the tag is from the point of view of the sender)
iftme!=0) /l'i.e., if i'm not the first group on the left

/I send my PPTemps|[0] to me-1 using tag 'L’
MPI_Send(&PPTemps[0], 1, MPI_FLOAT, me-1, 'L', MPI_COMM_WORLD);
ifl DEBUG) fprintf(stderr, "%3d sent 'L’ to %3d\n", me, me-1);

}

if(me != NumCpus-1) /l'i.e., not the last group on the right

{
/I send my PPTemps[PPSize-1] to me+1 using tag 'R’
MPI_Send(&PPTemps[PPSize-1], 1, MPI_FLOAT, me+1, 'R', MPI_COMM_WORLD);
ifl DEBUG) fprintf(stderr, "%3d sent 'R’ to %3d\n", me, me+1);

}

Oregon State
University
Computer Graphics
mjb — April 25, 2023

19

DoOneTimeStep, Il 39

Tor T; Tig
float left =0.;
float right = 0.; Processor #0 Processor #1 Processor #2 Processor #3
iftme!=0) /l'i.e., if i'm not the first group on the left

/I receive my "left" from me-1 using tag 'R’
MPI_Recv(&left, 1, MPI_FLOAT, me-1, 'R', MPI_COMM_WORLD, &status);
ifl DEBUG) fprintf(stderr, "%3d received 'R' from %3d\n", me, me-1);

}
if(me != NumCpus-1) /l'i.e., not the last group on the right
/I receive my "right" from me+1 using tag 'L'
MPI_Recv(&right, 1, MPI_FLOAT, me+1, 'L, MPI_COMM_WORLD, &status);
ifl DEBUG) fprintf(stderr, "%3d received 'L' from %3d\n", me, me+1);
}
e
a*.s
Oregon State
University
Computer Graphics

mjb — April 25, 2023

Sharing Values Across the Boundaries 40

TJ‘-I T: TH-J

Processor #0 H Processor #2 Processor #3

0
2
1

3

1sent'R to
2 sent'L'to
2 sent'R'to
2 received 'R' from 1
Osent'R'to 1
0 received 'L' from
1 received 'R' from
1 received 'L' from
3sent'L'to 2
IR 3 received 'R’ from
‘2*5 2 received 'L’ from
Oregon State
University
Computer Graphics

No -

W

mjb — April 25, 2023

20

1D Compute-to-Communicate Ratio 41

-0

CD Intraprocessor computing

O Interprocessor communication

Compute : Communicate ratio=N: 2

where N is the number of compute cells per processor

‘ In the above drawing, Compute : Communicate is 4 : 2

Oregon State
University
Computer Graphics
mjb — April 25, 2023

DoOneTimeStep, Il 42

/I first element on the left (0):
{
float dtemp = (k_over_rho_c *
(left - 2.*PPTemps[0] + PPTemps[1])/ (DX*DX)) * DT;
NextTemps[0] = PPTemps[0] + dtemp;

/I all the nodes in the middle:
for(inti=1;i< PPSize-1; i++)
{
float dtemp = (k_over_rho_c *
(PPTempsl[i-1] - 2.*PPTemps[i] + PPTemps[i+1])/ (DX*DX)) * DT;
NextTemps[i] = PPTemps]i] + dtemp;

/I last element on the right (PPSize-1):

{
float dtemp = (k_over_rho_c *
(PPTemps[PPSize-2] - 2.*PPTemps[PPSize-1] + right) / (DX*DX)) * DT;
NextTemps[PPSize-1] = PPTemps[PPSize-1] + dtemp;
}
Oregon State
University
Computer Graphics

mjb — April 25, 2023

21

DoOneTimeStep, IV

43

/I update the local dataset:

for(inti=0;i< PPSize; i++)
{

}

PPTemps[i] = NextTemps[i];

ot
Oregon State
University
Computer Graphics

mjb - April 25, 2023

1600.0

1400.0

1200.0

1000.0

800.0

600.0

400.0

Mega-Elements Computed Per Second

200.0

0.0

7
Oregon State
University
Computer Graphics

MPI Performance

Mega-Elements Computed Per Second vs. Number of Elements

44

-1
——2

——1

—8—16
——32

5000000 10000000 15000000 20000000 25000000 30000000 35000000 Number of

Number of Elements

Processors

mjb - April 25, 2023

22

Low Dataset-Size MPI Performance 45

Maega-Elements Computed Per Second vs. Number of £

Mega-Elements Computed Per Second vs. Number of Elements
T 4500
c
8
Q 4000
(2]
15 3500
o
B 3000 ——1
2 -2
3 2500
3 ——4
S 20 8
®
——16
*u:-; 1500
——3
<
§ w00
w
& 500
o
> i § 00
7 0 10000 20000 30000 40000 50000 60000 70000
= L
Oregon State
Uﬁrﬁerss;ity Number of Elements Number of
Computer Graphics Processors

mjb - April 25, 2023

5 o5 o= o2
8 B8 & B
& © © o
o o o (=]

Mega-Elements Computed Per Second
£ [=2] o
8 8 8
o o (=]

8
(=]

University
Computer Graphics

MPI Performance 46

Mega-Elements Computed Per Second vs. Number of Processors

—8— 1024
—8— 38192
—8— 65536
524288
—8— 4194304
—8— 16777216

—@8— 33554432

8 16 24 32

Number of
Number of Processors Elements

mjb - April 25, 2023

23

Using MPI and OpenMP on 13,680 nodes (437,760 cores) of the 47
Cray XE6 at NCSA at the University of lllinois

WRF Hurricane Sandy Simulation on Cray XE6 Blue Waters
300 100
90
250
80
200 70
g 60
172
S 150 50 2
=
=] 40
100 - Integration costs only
-WRFV3.3.1 30
- Cray XE6 2.3GHz AMD IL16
- 500 meter grid spacing 20
50 - 2 second time step
- horizontal grid 9120x9216 10
- 48 vertical levels
0 0
0.E+00 1.E+05 2.E+05 3.E+05 4.E+05
Cores
-~TFLOPS/sec -m-Parallel efficiency

From: Peter Johnsen, Mark Straka, Melvyn Shapiro, Alan Norton, Thomas Galarneau,
s Petascale WRF Simulation of Hurricane Sandy.
@:

Oregon State
University
Computer Graphics
mjb — April 25, 2023

MPI Reduction 48

MPI_Reduce(partialResult, globalResult, count, type, operator, dst, MPI_COMM_WORLD); |

Number of MPI_MIN
: elerr_lents in the MPI MAX
Where the partial partial result MPI_SUM Who is given the
result is stored on MPI CHAR MPI_PROD final answer
each CPU MPI_INT MPI_MINLOC
MPI_LONG MPI_MAXLOC
Place to store the full MPI_FLOAT MPL_LAND
result on the dst CPU MPI_DOUBLE MPL_BAND
ces MPI_LOR
MPI_BOR

MPI_LXOR

This really should be called MPI BXOR

Scatter/Gather/Reduction

(e] (8]

e |m+o+m-0|
E-*E Reduction
Oregon State q
Ul-%versity Both the sender and receivers need to execute MPI_Reduce.
Computer Graphics There is no separate receive function
mijb — April 25, 2023

24

MPI Reduction Example

/I gratuitous use of a reduce -- average all the temperatures:

float partialSum = 0.;
for(inti=0;i< PPSize; i++)
partialSum += PPTemps[i];

float globalSum = 0.;

if(me == BOSS)

MPI_Reduce(&partialSum, &globalSum, 1, MPI_FLOAT, MPI_SUM, BOSS, MP|_COMM_WORLD);

fprintf(stderr, "Average temperature = %f\n", globalSum/(float)NUMELEMENTS);

d (m+o+@+0 |
Oregon State
University

Computer Graphics

Reduction

mjb — April 25, 2023

MPI Barriers 50

| MPI_Barrier(MPI_COMM_WORLD); |

| Distributed Processors: ‘
0 1 2 3 4 5
§ :
Time t
EH H =, i IH
A4 Y. A4 A4 Y.
| Barrier |

BEEEE

All CPUs must execute the call to MPI_Barrier() before any of the CPUs can move past it.
That is, each CPU’s MPI_Barrier() blocks until all CPUs execute a call to MPI_Barrier().
Oregon State

University
Computer Graphics

mjb — April 25, 2023

51
MPI Derived Types

Idea: In addition to types MPI_INT, MPI_FLOAT, etc., allow the creation of new MPI types so that you can
transmit an “array of structures”.

Reason: There is significant overhead with each transmission. Better to send one entire array of
structures instead of sending several arrays separately.

MPI_Type_create_struct(count, blocklengths, displacements, types, datatype); |

struct point

{
int pointSize;
float x,y, z;

%

MPI_Datatype MPI_POINT;
int blocklengths[| ={1,1,1,1};

int displacements[]={ 0,478 127; A ~
MPI_type types[1 ={MPL_INT, MPI_FLOAT, MPI_FLOAT, MPI_FLOAT),

MPI_Type_create_struc@ocklengths, displacements, typds, &MPI_POINT
i ~ va

0{%222;;‘? | You can now use MPI_POINT everywhere you could have used MPI_INT, MPI_FLOAT etc.
Computer Graphics

mjb — April 25, 2023

52
MPI Timing

double MPI_Wtick(); |

Returns the resolution of the clock, in seconds.

double MPI_Wtime(); |

Returns the time, in seconds, since “some time in the past”.

| Warning: the clocks on the different CPUs are not guaranteed to be synchronized!

Oregon State
University
Computer Graphics
mjb — April 25, 2023

26

53
MPI Status-Checking

Some MPI calls have a &status in their argument list.

The status argument is declared to be of type MPI_Status, which is defined as this struct:

typedef struct _MPI_Stat
ypeder struct _ML_stalus * MPI_SOURCE is the rank of the node who sent this

int MPI_SOURCE;

int MPI TAG: * MPI_TAG is the tag used during the send
int MPI_ERROR; ,
} MPI_Status; * MPI_ERROR is the error number that occurred

Example:

MPI_Status status;
MPI_Recv(myData, MYDATA_SIZE, MPI_CHAR, BOSS, MPI_ANY_TAG, MPI_COMM_WORLD, &status);

fprintf(stderr, "Rank = %d, Tag = %d, Error Code = %d\n",
status.MPI_SOURCE, status.MPI_TAG, status.MPI_ERROR);

Oregon State
University
Computer Graphics
mib — April 25, 2023
MPI Error Codes 54
mi:ﬁ:z‘fﬁ;m Invaﬁ;“:ﬂ;‘:’;oim MPI_ERR_KEYVAL Invalid keyval has been passed
MPIERR COUNT il s MPI_ERR_NO_MEM MPI_ALLOC_MEM failed because memory is exhausted
MPI_ERR_TYPE Sivval datstype srgheat MPI_ERR_BASE Invalid base passed to MP|_FREE_MEM
MPI_ERR_TAG livalid i siginee MPI_ERR_INFO_KEY Key longer than MPI_MAX_INFO_KEY
MPI_ERR_COMM Invalid communicator MPI_ERR_INFO_VALUE Value longer than MPI_MAX_INFO_VAL
MPI_ERR_RANK Invalid rank MPI_ERR_INFO_NOKEY Invalid key passed to MPI_INFO_DELETE
MPI_ERR_REQUEST Invalid request (handle) MPI_ERR_SPAWN Error in spawning processes
MPI_ERR_ROOT Invalid root MPI_ERR_PORT Invalid port name passed to MPI_COMM_CONNECT
MPI_ERR_GROUP Invalid group MPI_ERR_SERVICE Invalid service name passed to MPI_UNPUBLISH_NAME
MPI_ERR_OP Invalid operation MPI_ERR_NAME Invalid service name passed to MPI_LOOKUP_NAME
MPI_ERR_TOPOLOGY Invalid topology MPI_ERR_WIN Tnvalid win argument
MPI_ERR_DIMS Invalid dimension argument MPI_ERR_SIZE Invalid size argument
MPI_ERR_ARG Invalid argument of some other kind MPI_ERR_DISP Tavalid disp argument
MPI_ERR_UNKNOWN Unknown error o
MPI_ERR_TRUNCATE Message truncated on receive MPLERR: INFO) Tnvalid info argument
MPI_ERR_OTHER Known error not in this list MPI_ERR_LOCKTYPE Invalid locktype argument
MPI_ERR_INTERN Internal MPI (implementation) error MPI_ERR_ASSERT Invalid assert argument
MPIL_ERR_IN_STATUS P MPI_ERR_RMA_CONFLICT Conflicting accesses to window
MPI:ERR:PENDING Pending request MPI_ERR_RMA_SYNC Wrong synchronization of RMA calls
MPI_ERR_FILE nvalid file handle
Collective argument not identical on all processes, or collective routines called in a different order by different

MPI_ERR_NOT_SAME
et proce:

MPI_ERR_AMODE Error related to the amode passed to MPI_FILE_OPEN
MPI_ERR_UNSUPPORTED_DATAREP Unsupported datarep passed to MPI_FILE_SET_VIEW
MPI_ERR_UNSUPPORTED_OPERATION Unsupported operation, such as secking on a file which supports sequential access only
MPI_ERR_NO_SUCH_FILE File does not exist
MPI_ERR_FILE_EXISTS File exists
MPI_ERR_BAD_FILE Invalid file name (e.g., path name too long)
MPI_ERR_ACCESS Permission denicd
MPI_ERR_NO_SPACE Not enough space
_ MPI_ERR_QUOTA Quota exceeded
MPI_ERR_READ_ONLY Read-only file or file system
MPI_ERR_FILE_IN_USE File operation could not be completed, as the file s currently open by some process
Conversion functions could not be registered because a data representation identifier that was already defined was
BPLERR_DUF_Desiep assed 1o MP| REGISTER, DATAREP Y
0“98:011 MPI_ERR_CONVERSION An error occurred in a user supplied data conversion function.
Univer mpi_Err_i0 Other /O error N
Computer MPI_ERR_LASTCODE Last error code

1y — April 25, 2023

27

