

A Spec Sheet Example								
NVIDIA Card 4000 Series	Number of CUDA Cores	Size of Power Supply **	Memory Type	Memory Interface Width	Memory Bandwidth GB/sec	Base Clock Speed	Boost Clock Speed	NOTES
RTX-4080 RTX-4090	9728 16384	750 watt 850 watt	GDDR6X GDDR6X	256 bit 384 bit	716.8 GB/s 1008 GB/s	2.21 GHz 2.23 GHz	2.51 GHz 2.52 GHz	16 GB of Memory 24 GB of Memory
NVIDIA Card 3000 Series	Number of CUDA Cores	Size of Power Supply **	Memory Type	Memory Interface Width	Memory Bandwidth GB/sec	Base Clock Speed	Boost Clock Speed	NOTES
RTX-3050	2560	550 watt	GDDR6	128 bit	224 GB/s	1550 MHz	1780 MHz	Standard with 8 GB of Memory
RTX-3060	3584	550 watt	GDDR6	192 bit	384 GB/s	1320 MHz	1780 MHz	Standard with 12 GB of Memory
RTX-3060 Ti	4864	600 watt	GDDR6	256 bit	448 GB/s	1410 MHz	1670 MHz	Standard with 8 GB of Memory
RTX-3070	5888	650 watt	GDDR6	256 bit	448 GB/s	1580 MHz	1770 MHz	Standard with 8 GB of Memory
RTX-3070 Ti	6144	750 watt	GDDR6X	256 bit	608 GB/s	1500 MHz	1730 MHz	Standard with 8 GB of Memory
RTX-3080	8704	750 watt	GDDR6X	320 bit	760 GB/s	1440 MHz	1710 MHz	Standard with 10 GB of Memory
RTX-3080 Ti	10240	750 watt	GDDR6X	384 bit	912 GB/s	1370 MHz	1670 MHz	Standard with 12 GB of Memory
RTX-3090 RTX-3090 Ti	10496 10572	750 watt 850 watt	GDDR6X GDDR6X	384 bit 384 bit	936 GB/s 936 GB/s	1400 MHz 1670 MHz	1700 MHz 1860 MHz	Standard with 24 GB of Memory Standard with 24 GB of Memory
NVIDIA Card	Number	Size of	Memory	Memory	Memory	Base	Boost Clock	NOTES
2000 Series	of CUDA Cores	Power Supply **	Туре	Width	Bandwidth GB/sec	Clock Speed	Speed	
RTX-2060	1920	500 watt	GDDR6	192 bit	336 GB/s	1365 MHz	1680 MHz	Standard with 6 GB of Memory
TX-2060 Super	2176	550 watt	GDDR6	256 bit	448 GB/s	1470 MHz	1650 MHz	Standard with 8 GB of Memory
RTX-2070	2304	550 watt	GDDR6	256 bit	448 GB/s	1410 MHz	1620 MHz	Standard with 8 GB of Memory
TX-2070 Super	2560	650 watt	GDDR6	256 bit	448 GB/s	1605 MHz	1770 MHz	Standard with 8 GB of Memory
RTX-2080	2944	650 watt	GDDR6	256 bit	448 GB/s	1515 MHz	1710 MHz	Standard with 8 GB of Memory
RTX-2080 Super	3072	650 watt	GDDR6	256 bit	496 GB/s	1650 MHz	1815 MHz	Standard with 8 GB of Memory
RTX-2080 Ti	4352	650 watt	GDDR6	352 bit	616 GB/s	1350 MHz	1545 MHz	Standard with 11 GB of Memory
Titan RTX	4608	650 watt	GDDR6	384 bit	672 GB/s	1350 MHz	1770 MHz	Standard with 24 GB of Memory
gon State								NVIDIA

mjb - March 28, 2023

Oregon State University Computer Graphics

Thinking ahead to CUDA and OpenCL...

How can GPUs execute General C Code Efficiently?

- Ask them to do what they do best. Unless you have a very intense **Data Parallel** application, don't even think about using GPUs for computing.
- GPU programs expect you to not just have a few threads, but to have *thousands* of them!
- Each thread executes the same program (called the *kernel*), but operates on a different small piece of the overall data
- Thus, you have many, many threads, all waking up at about the same time, all executing the same kernel program, all hoping to work on a small piece of the overall problem.
- CUDA and OpenCL have built-in functions so that each thread can figure out which thread number it is, and thus can figure out what part of the overall job it's supposed to do.
- When a thread gets blocked somehow (a memory access, waiting for information from another thread, etc.), the processor switches to executing another thread to work on.

mjb - March 28, 2023

19

So, the Trick is to Break your Problem into Many, Many Small Pieces

20

Particle Systems are a great example.

- 1. Have one thread per each particle.
- 2. Put all of the initial parameters into an array in GPU memory.
- 3. Tell each thread what the current Time is.
- 4. Each thread then computes its particle's position, color, etc. and writes it into arrays in GPU memory.
- 5. The CPU program then initiates OpenGL drawing of the information in those arrays.

Note: once setup, the data never leaves GPU memory!

Ben Weiss

mjb - March 28, 2023

What is Fused Multiply-Add?

23

Many scientific and engineering computations take the form:

D = A + (B*C);

A "normal" multiply-add would likely handle this as:

tmp = B*C;

D = A + tmp;

A "fused" multiply-add does it all at once, that is, when the low-order bits of B*C are ready, they are immediately added into the low-order bits of A at the same time the higher-order bits of B*C are being multiplied.

Oregon State University Computer Graphics

Note: "Normal" A+(B*C) ≠ "FMA" A+(B*C)

24

There are Two Approaches to Combining CPU and GPU Programs

- Combine both the CPU and GPU code in the same file. The CPU compiler compiles its part of that file. The GPU compiler compiles just its part of that file.
- 2. Have two separate programs: a .cpp and a .somethingelse that get compiled separately.

Advantages of Each

- 1. The CPU and GPU sections of the code know about each others' intents. Also, they can share common structs, #define's, etc.
- 2. It's potentially cleaner to look at each section by itself. Also, the GPU code can be easily used in combination with other CPU programs.

Who are we Talking About Here?

1 = NVIDIA's CUDA

2 = Khronos's OpenCL

We will talk about each of these separately - stay tuned!

mjb - March 28, 2023

Looking ahead: If threads all execute the same program, what happens on flow divergence?

25

- The line "if(a > b)" creates a vector of Boolean values giving the results of the if-statement for each thread. This becomes a "mask".
- 2. Then, the GPU executes all parts of the divergence:

Do This;

Do That;

3. During that execution, anytime a value wants to be stored, the mask is consulted and the storage only happens if that thread's location in the mask is the right value.

mjb - March 28, 2023

26

- GPUs were originally designed for the streaming-ness of computer graphics
- Now, GPUs are also used for the streaming-ness of data-parallel computing
- GPUs are better for some things. CPUs are better for others.

