GPU 101

mjb@cs.oregonstate.edu

This work is licensed under a <u>Creative Commons</u>
<u>Attribution-NonCommercial-NoDerivatives 4.0</u>
<u>International License</u>

gpu101.pptx mjb – March 28, 2023

How Have You Been Able to Gain Access to GPU Power?

There have been three ways:

1. Write a graphics display program (≥ 1985)

2. Write an application that looks like a graphics display program, but uses the fragment shader to do some per-node computation (≥ 2002)

3. Write in OpenCL or CUDA, which looks like C++ (≥ 2006)

Why do we care about GPU Programming? A History of GPU vs. CPU Performance

University

Computer Graphics

Why do we care about GPU Programming? A History of GPU vs. CPU Performance

The "Core-Score". How can this be?

Why have GPUs Been Outpacing CPUs in Performance?

Due to the nature of graphics computations, GPU chips are customized to stream **regular data**. General CPU chips must be able to handle **irregular data**.

Another reason is that GPU chips do not need the significant amount of **cache** space that occupies much of the real estate on general-purpose CPU chips. The GPU die real estate can then be re-targeted to hold more cores and thus to produce more processing power.

Why have GPUs Been Outpacing CPUs in Performance?

Another reason is that general CPU chips contain on-chip logic to do **branch prediction** and **out-of-order execution**. This, too, takes up chip die space.

But, CPU chips can handle more general-purpose computing tasks.

So, which is better, a CPU or a GPU?

It depends on what you are trying to do!

Originally, GPU Devices were very task-specific

Today's GPU Devices are not task-specific

Consider the architecture of the NVIDIA Tesla V100's that we have in our *DGX System*

84 Streaming Multiprocessors (SMs) / chip

64 cores / SM

Wow! 5,396 cores / chip? Really?

Oregon State
University
Computer Graphics

What is a "Core" in the GPU Sense?

Look closely, and you'll see that NVIDIA really calls these "CUDA Cores"

Look even more closely and you'll see that these CUDA Cores have no control logic – they are **pure compute units**. (The surrounding SM has the control logic.)

Other vendors refer to these as "Lanes". You might also think of them as 64-way SIMD.

A Mechanical Equivalent...

University
Computer Graphics

http://news.cision.com

How Many Robots Do You See Here?

Oregon State
University
Computer Graphics

12? 72? Depends what you count as a "robot".

A Spec Sheet Example

NVIDIA Card 4000 Series	Number of CUDA Cores	Size of Power Supply **	Memory Type	Memory Interface Width	Memory Bandwidth GB/sec	Base Clock Speed	Boost Clock Speed	NOTES
RTX-4080	9728	750 watt	GDDR6X	256 bit	716.8 GB/s		2.51 GHz	16 GB of Memory
RTX-4090	16384	850 watt	GDDR6X	384 bit	1008 GB/s	2.23 GHz	2.52 GHz	24 GB of Memory
K1X-4090	10304	050 Wall	GDDROX	304 bit	1000 GB/S	2.23 GHZ	2.52 GHZ	24 GB of Memory
NVIDIA Card	Number	Size of	Memory	Memory	Memory	Base	Boost Clock	NOTES
3000 Series	of CUDA	Power	Type	Interface	Bandwidth	Clock	Speed	
	Cores	Supply **	7.	Width	GB/sec	Speed		
RTX-3050	2560	550 watt	GDDR6	128 bit	224 GB/s	1550 MHz	1780 MHz	Standard with 8 GB of Memory
RTX-3060	3584	550 watt	GDDR6	192 bit	384 GB/s	1320 MHz	1780 MHz	Standard with 12 GB of Memory
RTX-3060 Ti	4864	600 watt	GDDR6	256 bit	448 GB/s	1410 MHz	1670 MHz	Standard with 8 GB of Memory
RTX-3070	5888	650 watt	GDDR6	256 bit	448 GB/s	1580 MHz	1770 MHz	Standard with 8 GB of Memory
RTX-3070 Ti	6144	750 watt	GDDR6X	256 bit	608 GB/s	1500 MHz	1730 MHz	Standard with 8 GB of Memory
RTX-3080	8704	750 watt	GDDR6X	320 bit	760 GB/s	1440 MHz	1710 MHz	Standard with 10 GB of Memory
RTX-3080 Ti	10240	750 watt	GDDR6X	384 bit	912 GB/s	1370 MHz	1670 MHz	Standard with 12 GB of Memory
RTX-3090	10496	750 watt	GDDR6X	384 bit	936 GB/s	1400 MHz	1700 MHz	Standard with 24 GB of Memory
RTX-3090 Ti	10572	850 watt	GDDR6X	384 bit	936 GB/s	1670 MHz	1860 MHz	Standard with 24 GB of Memory
NVIDIA Card	Number	Size of	Memory	Memory	Memory	Base	Boost Clock	NOTES
2000 Series	of CUDA	Power	Туре	Interface	Bandwidth	Clock	Speed	
	Cores	Supply **	NE KOLAN	Width	GB/sec	Speed		
RTX-2060	1920	500 watt	GDDR6	192 bit	336 GB/s	1365 MHz	1680 MHz	Standard with 6 GB of Memory
RTX-2060 Super	2176	550 watt	GDDR6	256 bit	448 GB/s	1470 MHz	1650 MHz	Standard with 8 GB of Memory
RTX-2070	2304	550 watt	GDDR6	256 bit	448 GB/s	1410 MHz	1620 MHz	Standard with 8 GB of Memory
RTX-2070 Super	2560	650 watt	GDDR6	256 bit	448 GB/s	1605 MHz	1770 MHz	Standard with 8 GB of Memory
RTX-2080	2944	650 watt	GDDR6	256 bit	448 GB/s	1515 MHz	1710 MHz	Standard with 8 GB of Memory
RTX-2080 Super	3072	650 watt	GDDR6	256 bit	496 GB/s	1650 MHz	1815 MHz	Standard with 8 GB of Memory
RTX-2080 Ti	4352	650 watt	GDDR6	352 bit	616 GB/s	1350 MHz	1545 MHz	Standard with 11 GB of Memory
Titan RTX	4608	650 watt	GDDR6	384 bit	672 GB/s	1350 MHz	1770 MHz	Standard with 24 GB of Memory

NVIDIA 4090 Spec Sheet

Connectors:

Board Number: PG139 SKU 330

Univer Computer

NVIDIA's Ampere Chip

The Bottom Line is This

It is obvious that it is difficult to *directly* compare a CPU with a GPU. They are optimized to do different things.

So, let's use the information about the architecture as a way to consider what CPUs should be good at and what GPUs should be good at

CPU

GPU

General purpose programming Multi-core under user control Irregular data structures Irregular flow control

Data parallel programming Little user control Regular data structures Regular Flow Control

BTW.

The general term in the OpenCL world for an SM is a **Compute Unit**.

The general term in the OpenCL world for a CUDA Core is a **Processing Element**.

Compute Units and Processing Elements are Arranged in Grids

Compute Unit

A GPU **Device** is organized as a grid of **Compute Units**.

Each Compute Unit is organized as a grid of **Processing Elements**.

So in NVIDIA terms, their new V100 GPU has 84 Compute Units, each of which has 64 Processing Elements, for a grand total of 5,396 Processing Elements.

PE	PE	PE	PE	PE
PE	PE	PE	PE	PE
PE	PE	PE	PE	PE

mp – March 28, 2023

Thinking ahead to CUDA and OpenCL...

How can GPUs execute General C Code Efficiently?

- Ask them to do what they do best. Unless you have a very intense **Data Parallel** application, don't even think about using GPUs for computing.
- GPU programs expect you to not just have a few threads, but to have thousands of them!
- Each thread executes the same program (called the *kernel*), but operates on a different small piece of the overall data
- Thus, you have many, many threads, all waking up at about the same time, all executing the same kernel program, all hoping to work on a small piece of the overall problem.
- CUDA and OpenCL have built-in functions so that each thread can figure out which thread number it is, and thus can figure out what part of the overall job it's supposed to do.
- When a thread gets blocked somehow (a memory access, waiting for information from another thread, etc.), the processor switches to executing another thread to work on.

So, the Trick is to Break your Problem into Many, Many Small Pieces

Particle Systems are a great example.

- Have one thread per each particle.
- 2. Put all of the initial parameters into an array in GPU memory.
- 3. Tell each thread what the current **Time** is.
- 4. Each thread then computes its particle's position, color, etc. and writes it into arrays in GPU memory.
- 5. The CPU program then initiates OpenGL drawing of the information in those arrays.

Note: once setup, the data never leaves GPU memory!

Ben Weiss

Something New – Tensor Cores

Oregon State

University

Computer Graphics

cuBLAS Mixed-Precision GEMM (FP16 Input, FP32 Compute)

Tesla V100 (Tensor Cores)

■ Tesla P100

Many scientific and engineering computations take the form:

$$D = A + (B*C);$$

A "normal" multiply-add would likely handle this as:

A "fused" multiply-add does it all at once, that is, when the low-order bits of B*C are ready, they are immediately added into the low-order bits of A at the same time the higher-order bits of B*C are being multiplied.

Oregon State
University
Computer Graphics

Note: "Normal" A+(B*C) ≠ "FMA" A+(B*C)

There are Two Approaches to Combining CPU and GPU Programs

- 1. Combine both the CPU and GPU code in the same file. The CPU compiler compiles its part of that file. The GPU compiler compiles just its part of that file.
- 2. Have two separate programs: a .cpp and a .somethingelse that get compiled separately.

Advantages of Each

- 1. The CPU and GPU sections of the code know about each others' intents. Also, they can share common structs, #define's, etc.
- 2. It's potentially cleaner to look at each section by itself. Also, the GPU code can be easily used in combination with other CPU programs.

Who are we Talking About Here?

1 = NVIDIA's CUDA

2 = Khronos's OpenCL

Looking ahead: If threads all execute the same program, what happens on flow divergence?

```
if( a > b )
Do This;
else
Do That;
```

- 1. The line "if(a > b)" creates a vector of Boolean values giving the results of the if-statement for each thread. This becomes a "mask".
- 2. Then, the GPU executes all parts of the divergence:

Do This; Do That;

3. During that execution, anytime a value wants to be stored, the mask is consulted and the storage only happens if that thread's location in the mask is the right value.

- GPUs were originally designed for the streaming-ness of computer graphics
- Now, GPUs are also used for the streaming-ness of data-parallel computing
- GPUs are better for some things. CPUs are better for others.

This is an Nvidia 1080 ti card – one that died on us. It willed its body to education.

Removing the covers:

University
Computer Graphics

Removing the heat sink:

This transfers heat from the GPU Chip to the cooling fins

Removing the fan assembly reveals the board:

Power half of the board:

Power distribution

Power input

Graphics half of the board:

Video out

GPU Chip

This one contains 7.2 billion transistors!

The newer cards contain 70+ billion transistors.

(Thank you, Moore's Law)

Underside of the board:

Underside of where the GPU chip attaches:

Here is a fun video of someone explaining the different parts of this same card:

https://www.youtube.com/watch?v=dSCNf9DIBGE

Oregon State University Computer Graphics

