Functional (Task) Decomposition

Oregon State
University
Mike Bailey

mjb@cs.oregonstate.edu

(o}
(3
(3
@
(5]
®
O

[T smae_ J [T s]
¥ I ¥
[I] I] Z]
This work is licensed under a Creative Commons [DoneComputing barter]
Attribution-NonCommercial-NoDerivatives 4.0 l | H [Copy imoglobal variablos]i ih Cony ‘..mm';.m,m;]
International License Ll (2
[Bonerssigning tarrer]
o +
7 L : S = —
v n““"‘"“‘““"f‘“—[
Oregon State Il b
Universil
Computer Graphics
functional_decomposition.pptx mjb — March 16, 2023

The Functional (or Task) Decomposition Design Pattern

I
Overall Problem]

Thread 0 l
Thread 2 Thread 3

‘ A good example of this is the computer game SimPark.

A==
Oregon State
University
Computer Graphics

mjb — March 16, 2023

The Functional (or Task) Decomposition Design Pattern

Climate

©
L)
)
@
)
@
9

7
i
Oregon State . i .

Universi Credit: Maxis (Sim Park)

Computer Graphics

mjb — March 16, 2023

How is this is different from Data Decomposition
(such as the OpenMP for-loops)

» This is done less for performance and more for programming convenience.

+ This is often done in simulations, where each quantity in the simulation needs to make
decisions about what it does next based on what it and all the other global quantities
are doing right now.

+ Each quantity takes all of the “Now” state data and computes its own “Next” state.

» The biggest trick is to synchronize the different quantities so that each of them is
seeing only what the others’ data values are right now. Nobody is allowed to switch
their data states until they are all done consuming the current data and thus are ready
to switch together.

» The synchronization is accomplished with barriers.

Quantity #1: Quantity #2: Quantity #3:
| GlobalNow State | | GlobalNow State | | Global Now State |

e

Dreg,_m)n tate.
tniverd |ndijvidual Next State | | Individual Next State | | Individual Next State |

Computer
mjb — March 16, 2023

| Setup the Now global variables

v

| Calculate the current Environmental Parameters |

v

| Spawn Threads using OpenMP Sections |

/ v \

Watcher | | A | B |
¥ L
Using the entire Now state, Using the entire Now state,
compute A's Next variables compute B’s Next variables
| DoneComputing barrier |
Copy A's Next state into the Copy B’s Next state into the
Nov‘ state Nowlstate
A 4 A 4 A 4
| DoneAssigning barrier |
| Print results and increment time |
| C new i P |
v v v
| DonePrinting barrier
6

The Functional Decomposition Design Pattern

int
main(int argc, char *argv[])

omp_set_num_threads(3);
InitBarrier(3); /I don’t worry about this for now, we will get to this later
#pragma omp parallel sections

#pragma omp section

Watcher();
}
#pragma omp section
{
Animals();
}

#pragma omp section
Plants();

} //implied barrier -- all functions must return to get past here

}

Oregonstate
University

Computer Graphics

mjb — March 16, 2023

The Functional Decomposition Design Pattern

<< advance time and re-compute all environmental variables >>

Selup the Now global variabias.
‘Calculate the current Evironmantal Parametars

‘Spawn Threads

Watsher] | Animals 1] | Plants
l r !

rl I
‘ Using the Now state. compute. { ” Using the Now state. compute-
|

he Next variatsas
¥

< Watcher()
while(<< You decide how to know when it's all finished? >>)
{
/I do nothing
WaitBarrier(); 1.
/I do nothing
WaitBarrier(); 2.
<< write out the “Now” state of data >>
WaitBarrier(); 3.
}
}
e
-
Oregon State
Universil
Computer Graphics

[DoneComputing bamer]
— ¥
Cogpy the Next state inlo. Copy the Next state into
| | =
i ‘DoneRssigning barier |
)
[
i
‘DonePrinting barrer]

mjb — March 16, 2023

The Functional Decomposition Design Pattern

< Animals())
while(<< You decide how to know when it's all finished? >>)
{
int nextXXX= << function of what all states are right Now >>
WaitBarrier(); 1.
NowXXX = nextXXX; /I copy the computed next state to the Now state
WaitBarrier(); 2.
/I do nothing
WaitBarrier(); 11'3.
} Sei e Nowgobal arbes
} Catias o s Enormeril Parmoters
Spawn Threads
Watsher] | Animals 1] | Plants
¥ [r 3
l | .
[DoneComputing borrr]
— ¥
Cogpy the Next state inlo. Copy the Next state into
- | | =
G l ‘DoneAssigning barier |
O
Oregon State [T
Unjversity Doneprinting barer]
Computer Graphics | S— = ===

mjb — March 16, 2023

My Simulation Output 9

Pl7nts
: / Rainfall f~§ Animals
” j»!ﬁ‘&{ "?L Temperature
o *g

W |
g (W R

10

T4

Oregon State
University -
Computer Graphics AN

mjb — March 16, 2023

You Might Have to Make Your Own Barrier Function 10

Why can’t we just use #pragma omp barrier ?

The Functional Decomposition is a good example of when you sometimes can't.

There are two ways to think about how to allow a program to implement a barrier:

1. Make a thread block at a specific location in the code. Keep blocking until all threads have
blocked there.

2. Make a thread block when it asks to "Wait". Keep blocking until all threads have blocked by
asking to "Wait".

» g++ apparently allows both #1 and #2

» Visual Studio requires #1

* The Functional Decomposition shown here wants to have #2,
because the barriers need to be in different functions

» The OpenMP specification only allows for #1.

ot
Oregon State
University
Computer Graphics
mjb — March 16, 2023

Sometimes You Have to Make Your Own Barrier Function

omp_lock_t Lock;

volatile int NumiInThreadTeam;
volatile int NumAtBarrier;
volatile int NumGone;

void
InitBarrier(intn)

NuminThreadTeam = n; /I number of threads you want to block at the barrier
NumAtBarrier = 0;
omp_init_lock(&Lock);

}

void
WaitBarrier()
{

omp_set_lock(&Lock);

11

NumAtBarrier++;
if(NumAtBarrier == NumInThreadTeam) /l release the waiting threads
{
NumGone = 0;
NumAtBarrier = 0;
/I let all other threads return before this one unlocks:
while(NumGone != NumInThreadTeam - 1);
omp_unset_lock(&Lock);
return;
}
}
omp_unset_lock(&Lock);
while(NumAtBarrier 1= 0); /I all threads wait here until the last one arrives ...
#pragma omp atomic /I ... and sets NumAtBarrier to 0
NumGone++;
Computer { }
mjb — March 16, 2023
The WaitAtBarrier() Logic 12
Thread 40 Thread #1 Thread #2 NuminThreadTeam | NumAtBarrier| NumGone

3 0

Calls waitBarrier()

Sets the lock

|increments NumaAtBarrier
NumAtBarrier != NuminThreadTeam

Unsets the lock

Stuck at while-loop #2

Calls WaitBarrier()

Sets the lock

Increments NumAt8arrier

NumAtBarrier != NuminThreadTeam

Unsets the lock

Stuck at while-loop #2

Calls waitBarrier{)

Sets the lock

Increments NumAtBarrier

NumAtBarrier luminThreadTeam
Sets NumGone

|sets NumatBarrier
Stuck at while-loop #1
Falls through while-loop #2
Increments
|Returns

Falls through while-loop #2

Increments NumGone

Returns

Falls through while-loap #1

Unsets the lock

S CICIE G I A A I I S I R T S S I T R A

wfmfm e fn|n|elelo|olole

Returns

University
Computer Graphics

@

mjb — March 16, 2023

