

	L1	L2	L3	Memory	Disk
Type of Storage	On-chip	On-chip	On-chip	Off-chip	Disk
Typical Size	100 KB	8 MB	32 MB	32 GB	Many GBs
Typical Access Time (ns)	.25	.50	10.8	50	5,000,000
Scaled Access Time	1 second	2 seconds	43 seconds	3.3 minutes	231 days
Managed by	Hardware	Hardware	Hardware	OS	OS
uantitative Appro	oach, Morgan-K	aufmann, 2007. (4	Computer Architecto the Edition) tructions and one		ill often see

Demonstrating the Cache-Miss Problem – Across Rows #define NUM 10000 float Array[NUM][NUM]; double MyTimer(); main(int argc, char *argv[])
{ float sum = 0.: double start = MyTimer(); for(int i = 0; i < NUM; i++) for(int j = 0; j < NUM; j++) { sum += Array[i][j]; // access across a row } double finish = MyTimer(); double row_secs = finish - start; T Oregon State University Computer Graphics

9

11

21 **Cache Architectures** N-way Set Associative – a cache line from a particular block of memory can appear in a limited number of places in cache. Each "limited place" is called a set of cache lines. A set contains N cache lines The memory block can appear in any cache line in its set. 0 Most Caches today are N-way Set Associative 2 N is typically 4 for L1 and 8 or 16 for L2 $\,$ 3 5 6 7 . 64 bytes Cache line blocks in memory (the numbers) T This would be called "2-way and what cache line set Set Set Set Set 0 1 2 3 Sets of Cache Lines they map to (the colors) University water Graph

21

How do you figure out where in cache a specific

memory address will live?

51 False Sharing – Fix #2 Stack #include <stdlib.h> struct s Makes this a private variable that lives in each thread's individual stack 1 float value: Stack } Array[4]; omp_set_num_threads(4); Common Program const int SomeBigNumber = 10000000; Executable #pragma omp parallel for for(int i = 0; i < 4/++) { foat trpp = vrray[i].value; for(int] = 0; j < SomeBigNumber; j++)</pre> Common Globals tmp = tmp + (float)rand(); Array[i].value = tmp; Common Неар T This works because a localized temporary variable is created in each core's stack area, so little or no cache University mputer Graph line conflict exists

51

50

