
48 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

engineers, including ACM A.M. Tur-
ing Award laureate Fred Brooks, Jr.,
thought they could create a single ISA
that would efficiently unify all four of
these ISA bases.

They needed a technical solution
for how computers as inexpensive as

WE BEGAN OUR Turing Lecture June 4, 201811 with a review
of computer architecture since the 1960s. In addition
to that review, here, we highlight current challenges
and identify future opportunities, projecting another
golden age for the field of computer architecture in
the next decade, much like the 1980s when we did the
research that led to our award, delivering gains in cost,
energy, and security, as well as performance.

“Those who cannot remember the past are condemned
to repeat it.” —George Santayana, 1905

Software talks to hardware through a vocabulary
called an instruction set architecture (ISA). By the early
1960s, IBM had four incompatible lines of computers,
each with its own ISA, software stack, I/O system,
and market niche—targeting small business, large
business, scientific, and real time, respectively. IBM

A New Golden
Age for
Computer
Architecture

DOI:10.1145/3282307

Innovations like domain-specific hardware,
enhanced security, open instruction sets, and
agile chip development will lead the way.

BY JOHN L. HENNESSY AND DAVID A. PATTERSON

 key insights
 ˽ Software advances can inspire

architecture innovation.

 ˽ Elevating the hardware/software
interface creates opportunities for
architecture innovation.

 ˽ The marketplace ultimately settles
architecture debates.

turing lecture

http://dx.doi.org/10.1145/3282307

FEBRUARY 2019 | VOL. 62 | NO. 2 | COMMUNICATIONS OF THE ACM 49

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 P
E

T
E

R
 C

R
O

W
T

H
E

R
 A

S
S

O
C

I
A

T
E

S

ly 6. The most expensive computers
had the widest control stores because
more complicated data paths used
more control lines. The least-costly
computers had narrower control
stores due to simpler hardware but
needed more microinstructions since
they took more clock cycles to execute
a System/360 instruction.

Facilitated by microprogramming,
IBM bet the future of the company
that the new ISA would revolutionize
the computing industry and won the
bet. IBM dominated its markets, and
IBM mainframe descendants of the
computer family announced 55 years

those with 8-bit data paths and as fast
as those with 64-bit data paths could
share a single ISA. The data paths are
the “brawn” of the processor in that
they perform the arithmetic but are rela-
tively easy to “widen” or “narrow.” The
greatest challenge for computer de-
signers then and now is the “brains”
of the processor—the control hard-
ware. Inspired by software program-
ming, computing pioneer and Turing
laureate Maurice Wilkes proposed
how to simplify control. Control was
specified as a two-dimensional ar-
ray he called a “control store.” Each
column of the array corresponded to

one control line, each row was a mi-
croinstruction, and writing microin-
structions was called microprogram-
ming.39 A control store contains an
ISA interpreter written using micro-
instructions, so execution of a con-
ventional instruction takes several mi-
croinstructions. The control store was
implemented through memory, which
was much less costly than logic gates.

The table here lists four models
of the new System/360 ISA IBM an-
nounced April 7, 1964. The data paths
vary by a factor of 8, memory capacity
by a factor of 16, clock rate by nearly 4,
performance by 50, and cost by near-

50 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

turing lecture

ated for the Xerox Palo Alto Research
Center in 1973. It was indeed the first
personal computer, sporting the first
bit-mapped display and first Ethernet
local-area network. The device control-
lers for the novel display and network
were microprograms stored in a 4,096-
word × 32-bit WCS.

Microprocessors were still in the
8-bit era in the 1970s (such as the In-
tel 8080) and programmed primarily
in assembly language. Rival design-
ers would add novel instructions to
outdo one another, showing their ad-
vantages through assembly language
examples.

Gordon Moore believed Intel’s
next ISA would last the lifetime of
Intel, so he hired many clever com-
puter science Ph.D.’s and sent them
to a new facility in Portland to invent
the next great ISA. The 8800, as Intel
originally named it, was an ambi-
tious computer architecture project
for any era, certainly the most ag-
gressive of the 1980s. It had 32-bit
capability-based addressing, ob-
ject-oriented architecture, variable-
bit-length instructions, and its own

operating system written in the then-
new programming language Ada.

This ambitious project was alas sev-
eral years late, forcing Intel to start an
emergency replacement effort in Santa
Clara to deliver a 16-bit microproces-
sor in 1979. Intel gave the new team 52
weeks to develop the new “8086” ISA
and design and build the chip. Given
the tight schedule, designing the ISA
took only 10 person-weeks over three
regular calendar weeks, essentially by
extending the 8-bit registers and in-
struction set of the 8080 to 16 bits. The
team completed the 8086 on schedule
but to little fanfare when announced.

To Intel’s great fortune, IBM was
developing a personal computer to
compete with the Apple II and needed
a 16-bit microprocessor. IBM was in-
terested in the Motorola 68000, which
had an ISA similar to the IBM 360, but
it was behind IBM’s aggressive sched-
ule. IBM switched instead to an 8-bit
bus version of the 8086. When IBM an-
nounced the PC on August 12, 1981, the
hope was to sell 250,000 PCs by 1986.
The company instead sold 100 million
worldwide, bestowing a very bright fu-
ture on the emergency replacement
Intel ISA.

Intel’s original 8800 project was
renamed iAPX-432 and finally an-
nounced in 1981, but it required sev-
eral chips and had severe performance
problems. It was discontinued in 1986,
the year after Intel extended the 16-
bit 8086 ISA in the 80386 by expand-
ing its registers from 16 bits to 32 bits.
Moore’s prediction was thus correct
that the next ISA would last as long as
Intel did, but the marketplace chose
the emergency replacement 8086 rath-
er than the anointed 432. As the archi-
tects of the Motorola 68000 and iAPX-
432 both learned, the marketplace is
rarely patient.

From complex to reduced instruc-
tion set computers. The early 1980s
saw several investigations into com-
plex instruction set computers (CISC)
enabled by the big microprograms in
the larger control stores. With Unix
demonstrating that even operating sys-
tems could use high-level languages,
the critical question became: “What in-
structions would compilers generate?”
instead of “What assembly language
would programmers use?” Significant-
ly raising the hardware/software inter-

ago still bring in $10 billion in rev-
enue per year.

As seen repeatedly, although the
marketplace is an imperfect judge of
technological issues, given the close
ties between architecture and com-
mercial computers, it eventually deter-
mines the success of architecture inno-
vations that often require significant
engineering investment.

Integrated circuits, CISC, 432, 8086,
IBM PC. When computers began us-
ing integrated circuits, Moore’s Law
meant control stores could become
much larger. Larger memories in turn
allowed much more complicated ISAs.
Consider that the control store of the
VAX-11/780 from Digital Equipment
Corp. in 1977 was 5,120 words × 96
bits, while its predecessor used only
256 words × 56 bits.

Some manufacturers chose to make
microprogramming available by let-
ting select customers add custom
features they called “writable control
store” (WCS). The most famous WCS
computer was the Alto36 Turing laure-
ates Chuck Thacker and Butler Lamp-
son, together with their colleagues, cre-

Features of four models of the IBM System/360 family; IPS is instructions per second.

Model M30 M40 M50 M65

Datapath width 8 bits 16 bits 32 bits 64 bits

Control store size 4k x 50 4k x 52 2.75k x 85 2.75k x 87

Clock rate
(ROM cycle time)

1.3 MHz
(750 ns)

1.6 MHz
(625 ns)

2 MHz
(500 ns)

5 MHz
(200 ns)

Memory capacity 8–64 KiB 16–256 KiB 64–512 KiB 128–1,024 KiB

Performance (commercial) 29,000 IPS 75,000 IPS 169,000 IPS 567,000 IPS

Performance (scientific) 10,200 IPS 40,000 IPS 133,000 IPS 563,000 IPS

Price (1964 $) $192,000 $216,000 $460,000 $1,080,000

Price (2018 $) $1,560,000 $1,760,000 $3,720,000 $8,720,000

Figure 1. University of California, Berkeley, RISC-I and Stanford University MIPS
microprocessors.

FEBRUARY 2019 | VOL. 62 | NO. 2 | COMMUNICATIONS OF THE ACM 51

turing lecture

datapath, along with instruction and
data caches, in a single chip.

For example, Figure 1 shows the
RISC-I8 and MIPS12 microprocessors
developed at the University of Califor-
nia, Berkeley, and Stanford University
in 1982 and 1983, respectively, that
demonstrated the benefits of RISC.
These chips were eventually presented
at the leading circuit conference, the
IEEE International Solid-State Circuits
Conference, in 1984.33,35 It was a re-
markable moment when a few gradu-
ate students at Berkeley and Stanford
could build microprocessors that were
arguably superior to what industry
could build.

These academic chips inspired
many companies to build RISC micro-
processors, which were the fastest for
the next 15 years. The explanation is
due to the following formula for pro-
cessor performance:

Time/Program = Instructions /
Program × (Clock cycles) /

Instruction × Time / (Clock cycle)
DEC engineers later showed2 that

the more complicated CISC ISA execut-
ed about 75% of the number instruc-
tions per program as RISC (the first
term), but in a similar technology CISC
executed about five to six more clock
cycles per instruction (the second
term), making RISC microprocessors
approximately 4× faster.

Such formulas were not part of com-
puter architecture books in the 1980s,
leading us to write Computer Architec-
ture: A Quantitative Approach13 in 1989.
The subtitle suggested the theme of the
book: Use measurements and bench-
marks to evaluate trade-offs quanti-
tatively instead of relying more on the
architect’s intuition and experience, as
in the past. The quantitative approach
we used was also inspired by what Tur-
ing laureate Donald Knuth’s book had
done for algorithms.20

VLIW, EPIC, Itanium. The next ISA
innovation was supposed to succeed
both RISC and CISC. Very long instruc-
tion word (VLIW)7 and its cousin, the
explicitly parallel instruction computer
(EPIC), the name Intel and Hewlett
Packard gave to the approach, used wide
instructions with multiple independent
operations bundled together in each
instruction. VLIW and EPIC advocates
at the time believed if a single instruc-
tion could specify, say, six independent

face created an opportunity for archi-
tecture innovation.

Turing laureate John Cocke and his
colleagues developed simpler ISAs and
compilers for minicomputers. As an
experiment, they retargeted their re-
search compilers to use only the simple
register-register operations and load-
store data transfers of the IBM 360 ISA,
avoiding the more complicated instruc-
tions. They found that programs ran up
to three times faster using the simple
subset. Emer and Clark6 found 20% of
the VAX instructions needed 60% of the
microcode and represented only 0.2%
of the execution time. One author (Pat-
terson) spent a sabbatical at DEC to
help reduce bugs in VAX microcode. If
microprocessor manufacturers were
going to follow the CISC ISA designs
of the larger computers, he thought
they would need a way to repair the
microcode bugs. He wrote such a
paper,31 but the journal Computer
rejected it. Reviewers opined that it was
a terrible idea to build microproces-
sors with ISAs so complicated that they
needed to be repaired in the field. That
rejection called into question the value
of CISC ISAs for microprocessors. Iron-
ically, modern CISC microprocessors
do indeed include microcode repair
mechanisms, but the main result of his
paper rejection was to inspire him to
work on less-complex ISAs for micro-
processors—reduced instruction set
computers (RISC).

These observations and the shift to
high-level languages led to the opportu-
nity to switch from CISC to RISC. First,
the RISC instructions were simplified
so there was no need for a microcod-
ed interpreter. The RISC instructions
were typically as simple as microin-
structions and could be executed di-
rectly by the hardware. Second, the
fast memory, formerly used for the
microcode interpreter of a CISC ISA,
was repurposed to be a cache of RISC
instructions. (A cache is a small, fast
memory that buffers recently execut-
ed instructions, as such instructions
are likely to be reused soon.) Third,
register allocators based on Gregory
Chaitin’s graph-coloring scheme made
it much easier for compilers to efficient-
ly use registers, which benefited these
register-register ISAs.3 Finally, Moore’s
Law meant there were enough transis-
tors in the 1980s to include a full 32-bit

In today’s post-PC
era, x86 shipments
have fallen almost
10% per year since
the peak in 2011,
while chips with
RISC processors
have skyrocketed
to 20 billion.

52 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

turing lecture

tion of the RISC microinstructions.
Any ideas RISC designers were using
for performance—separate instruc-
tion and data caches, second-level
caches on chip, deep pipelines, and
fetching and executing several in-
structions simultaneously—could
then be incorporated into the x86.
AMD and Intel shipped roughly 350
million x86 microprocessors annually
at the peak of the PC era in 2011. The
high volumes and low margins of the
PC industry also meant lower prices
than RISC computers.

Given the hundreds of millions
of PCs sold worldwide each year, PC
software became a giant market.
Whereas software providers for the
Unix marketplace would offer differ-
ent software versions for the differ-
ent commercial RISC ISAs—Alpha,
HP-PA, MIPS, Power, and SPARC—the
PC market enjoyed a single ISA, so
software developers shipped “shrink
wrap” software that was binary com-
patible with only the x86 ISA. A much
larger software base, similar perfor-
mance, and lower prices led the x86
to dominate both desktop computers
and small-server markets by 2000.

Apple helped launch the post-PC
era with the iPhone in 2007. Instead of
buying microprocessors, smartphone
companies built their own systems
on a chip (SoC) using designs from
other companies, including RISC
processors from ARM. Mobile-device
designers valued die area and energy
efficiency as much as performance,
disadvantaging CISC ISAs. Moreover,
arrival of the Internet of Things vastly
increased both the number of proces-
sors and the required trade-offs in die
size, power, cost, and performance.
This trend increased the importance
of design time and cost, further dis-
advantaging CISC processors. In to-
day’s post-PC era, x86 shipments have
fallen almost 10% per year since the
peak in 2011, while chips with RISC
processors have skyrocketed to 20 bil-
lion. Today, 99% of 32-bit and 64-bit
processors are RISC.

Concluding this historical review,
we can say the marketplace settled the
RISC-CISC debate; CISC won the later
stages of the PC era, but RISC is win-
ning the post-PC era. There have been
no new CISC ISAs in decades. To our
surprise, the consensus on the best

to write.” Pundits noted delays and
underperformance of Itanium and re-
christened it “Itanic” after the ill-fated
Titantic passenger ship. The market-
place again eventually ran out of pa-
tience, leading to a 64-bit version of
the x86 as the successor to the 32-bit
x86, and not Itanium.

The good news is VLIW still matches
narrower applications with small pro-
grams and simpler branches and omit
caches, including digital-signal processing.

RISC vs. CISC in the
PC and Post-PC Eras
AMD and Intel used 500-person de-
sign teams and superior semicon-
ductor technology to close the per-
formance gap between x86 and RISC.
Again inspired by the performance
advantages of pipelining simple vs.
complex instructions, the instruction
decoder translated the complex x86
instructions into internal RISC-like
microinstructions on the fly. AMD
and Intel then pipelined the execu-

operations—two data transfers, two in-
teger operations, and two floating point
operations—and compiler technology
could efficiently assign operations into
the six instruction slots, the hardware
could be made simpler. Like the RISC
approach, VLIW and EPIC shifted work
from the hardware to the compiler.

Working together, Intel and Hewlett
Packard designed a 64-bit processor based
on EPIC ideas to replace the 32-bit x86.
High expectations were set for the first
EPIC processor, called Itanium by In-
tel and Hewlett Packard, but the real-
ity did not match its developers’ early
claims. Although the EPIC approach
worked well for highly structured
floating-point programs, it struggled
to achieve high performance for in-
teger programs that had less predict-
able cache misses or less-predictable
branches. As Donald Knuth later
noted:21 “The Itanium approach ...
was supposed to be so terrific—un-
til it turned out that the wished-for
compilers were basically impossible

Figure 3. Transistors per chip and power per mm2.

N
an

om
et

er
s

200

180

160

140

120

100

80

60

40

20

0

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

R
el

at
iv

e
P

ow
er

 p
er

 n
m

2

2000 2002 2004 2006 2008 2010 2012 2014 2016

Technology (nm) Power/nm2

2018 2020

Figure 2. Transistors per chip of Intel microprocessors vs. Moore’s Law.

10,000,000

Moore’s Law vs. Intel Microprocessor Density

1,000,000

100,000

10,000

1,000

100

10

1980 1990

Density

2000 2010

Moore’s Law (1975 version)

FEBRUARY 2019 | VOL. 62 | NO. 2 | COMMUNICATIONS OF THE ACM 53

turing lecture

cluding approximately 15 branches,
as they represent approximately 25%
of executed instructions. To keep the
pipeline full, branches are predicted
and code is speculatively placed into
the pipeline for execution. The use
of speculation is both the source of
ILP performance and of inefficiency.
When branch prediction is perfect,
speculation improves performance
yet involves little added energy cost—
it can even save energy—but when it
“mispredicts” branches, the proces-
sor must throw away the incorrectly
speculated instructions, and their
computational work and energy are
wasted. The internal state of the pro-
cessor must also be restored to the
state that existed before the mispre-
dicted branch, expending additional
time and energy.

To see how challenging such a design
is, consider the difficulty of correctly

ISA principles for general-purpose
processors today is still RISC, 35 years
after their introduction.

Current Challenges for
Processor Architecture
“If a problem has no solution, it may
not be a problem, but a fact—not to be
solved, but to be coped with over time.”
 —Shimon Peres

While the previous section focused
on the design of the instruction set
architecture (ISA), most computer
architects do not design new ISAs
but implement existing ISAs in the
prevailing implementation technol-
ogy. Since the late 1970s, the technol-
ogy of choice has been metal oxide
semiconductor (MOS)-based inte-
grated circuits, first n-type metal–ox-
ide semiconductor (nMOS) and then
complementary metal–oxide semi-
conductor (CMOS). The stunning rate
of improvement in MOS technology—
captured in Gordon Moore’s predic-
tions—has been the driving factor
enabling architects to design more-
aggressive methods for achieving
performance for a given ISA. Moore’s
original prediction in 196526 called
for a doubling in transistor density
yearly; in 1975, he revised it, project-
ing a doubling every two years.28 It
eventually became called Moore’s
Law. Because transistor density grows
quadratically while speed grows lin-
early, architects used more transis-
tors to improve performance.

End of Moore’s Law and
Dennard Scaling
Although Moore’s Law held for many
decades (see Figure 2), it began to slow
sometime around 2000 and by 2018
showed a roughly 15-fold gap between
Moore’s prediction and current capa-
bility, an observation Moore made in
2003 that was inevitable.27 The current
expectation is that the gap will con-
tinue to grow as CMOS technology ap-
proaches fundamental limits.

Accompanying Moore’s Law was a
projection made by Robert Dennard
called “Dennard scaling,”5 stating that
as transistor density increased, power
consumption per transistor would
drop, so the power per mm2 of sili-
con would be near constant. Since the
computational capability of a mm2 of
silicon was increasing with each new

generation of technology, computers
would become more energy efficient.
Dennard scaling began to slow sig-
nificantly in 2007 and faded to almost
nothing by 2012 (see Figure 3).

Between 1986 and about 2002, the
exploitation of instruction level paral-
lelism (ILP) was the primary architec-
tural method for gaining performance
and, along with improvements in speed
of transistors, led to an annual perfor-
mance increase of approximately 50%.
The end of Dennard scaling meant ar-
chitects had to find more efficient ways
to exploit parallelism.

To understand why increasing ILP
caused greater inefficiency, consider
a modern processor core like those
from ARM, Intel, and AMD. Assume it
has a 15-stage pipeline and can issue
four instructions every clock cycle. It
thus has up to 60 instructions in the
pipeline at any moment in time, in-

Figure 4. Wasted instructions as a percentage of all instructions completed on an Intel
Core i7 for a variety of SPEC integer benchmarks.

40%
35%
30%
25%
20%
15%
10%

5%
0

P
E

R
LB

E
N

B
ZI

P
2

G
C

C

M
C

F

G
O

B
M

K

H
M

M
E

R

S
J

E
N

G

LI
B

Q
U

A
N

T
U

M

H
26

4
R

E
F

O
M

N
E

T
P

P

A
S

TA
R

XA
L

A
N

C
B

M
K

11%

24%

15%

39%

32%

6%

25%

1%
5%

22%

38%

7%

Figure 5. Effect of Amdahl’s Law on speedup as a fraction of clock cycle time in serial
mode.

65

60

55

50

45

40

35

30

25

20

15

10

5

0

Processor Count

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

1%

2%

4%
6%
8%
10%

S
p

ee
d

u
p

54 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

turing lecture

ent approach to achieve performance
improvements. The multicore era was
thus born.

Multicore shifted responsibility for
identifying parallelism and deciding
how to exploit it to the programmer
and to the language system. Multicore
does not resolve the challenge of ener-
gy-efficient computation that was exac-
erbated by the end of Dennard scaling.
Each active core burns power whether
or not it contributes effectively to the
computation. A primary hurdle is an
old observation, called Amdahl’s Law,
stating that the speedup from a paral-
lel computer is limited by the portion
of a computation that is sequential.
To appreciate the importance of this
observation, consider Figure 5, show-
ing how much faster an application
runs with up to 64 cores compared to

a single core, assuming different por-
tions of serial execution, where only
one processor is active. For example,
when only 1% of the time is serial, the
speedup for a 64-processor configura-
tion is about 35. Unfortunately, the
power needed is proportional to 64
processors, so approximately 45% of
the energy is wasted.

Real programs have more complex
structures of course, with portions
that allow varying numbers of proces-
sors to be used at any given moment
in time. Nonetheless, the need to com-
municate and synchronize periodically
means most applications have some
portions that can effectively use only
a fraction of the processors. Although
Amdahl’s Law is more than 50 years
old, it remains a difficult hurdle.

With the end of Dennard scaling,
increasing the number of cores on a
chip meant power is also increasing
at nearly the same rate. Unfortunately,
the power that goes into a processor
must also be removed as heat. Mul-
ticore processors are thus limited by
the thermal dissipation power (TDP),
or average amount of power the pack-
age and cooling system can remove.
Although some high-end data centers
may use more advanced packages and
cooling technology, no computer us-
ers would want to put a small heat
exchanger on their desks or wear a ra-
diator on their backs to cool their cell-
phones. The limit of TDP led directly
to the era of “dark silicon,” whereby
processors would slow on the clock
rate and turn off idle cores to prevent
overheating. Another way to view this
approach is that some chips can real-
locate their precious power from the
idle cores to the active ones.

An era without Dennard scaling,
along with reduced Moore’s Law and
Amdahl’s Law in full effect means
inefficiency limits improvement in
performance to only a few percent
per year (see Figure 6). Achieving
higher rates of performance improve-
ment—as was seen in the 1980s and
1990s—will require new architec-
tural approaches that use the inte-
grated-circuit capability much more
efficiently. We will return to what ap-
proaches might work after discussing
another major shortcoming of mod-
ern computers—their support, or
lack thereof, for computer security.

predicting the outcome of 15 branches.
If a processor architect wants to limit
wasted work to only 10% of the time,
the processor must predict each branch
correctly 99.3% of the time. Few general-
purpose programs have branches that
can be predicted so accurately.

To appreciate how this wasted work
adds up, consider the data in Figure 4,
showing the fraction of instructions
that are effectively executed but turn
out to be wasted because the proces-
sor speculated incorrectly. On average,
19% of the instructions are wasted for
these benchmarks on an Intel Core i7.
The amount of wasted energy is great-
er, however, since the processor must
use additional energy to restore the
state when it speculates incorrectly.
Measurements like these led many to
conclude architects needed a differ-

Figure 6. Growth of computer performance using integer programs (SPECintCPU).

Figure 7. Potential speedup of matrix multiply in Python for four optimizations.

100,000

10,000

1,000

100

10

1
1

47

366

6,727

62,806

Python

Matrix Multiply Speedup Over Native Python

S
p

ee
d

u
p

C + parallel
loops

+ memory
optimization

+ SIMD
instructions

1980

100,000

CISC 2X/2.5 years
(22%/year)

RISC 2X/1.5 years
(52%/year)

End of Dennard Scaling ⇒ Multicore 2X/3.5 years (23%/year)

Amdahl’s Law ⇒ 2X/6 years (12%/year)

End of the Line ⇒ 2X/20 years (3%/yr)

10,000

1,000

100

10

P
er

fo
rm

an
ce

 v
s.

 V
A

X
11

-7
8

0

1
1985 1990 1995 2000 2005 2010 2015

FEBRUARY 2019 | VOL. 62 | NO. 2 | COMMUNICATIONS OF THE ACM 55

turing lecture

to be attacked creates many new vul-
nerabilities. Two more vulnerabilities
in the virtual-machine architecture
were subsequently reported.37,38 One
of them, called Foreshadow, allows
penetration of the Intel SGX security
mechanisms designed to protect the
highest risk data (such as encryption
keys). New vulnerabilities are being
discovered monthly.

Side-channel attacks are not new,
but in most earlier cases, a software
flaw allowed the attack to succeed. In
the Meltdown, Spectre, and other at-
tacks, it is a flaw in the hardware im-
plementation that exposes protected
information. There is a fundamental
difficulty in how processor architects
define what is a correct implementa-
tion of an ISA because the standard
definition says nothing about the
performance effects of executing an
instruction sequence, only about the
ISA-visible architectural state of the
execution. Architects need to rethink
their definition of a correct implemen-
tation of an ISA to prevent such securi-
ty flaws. At the same time, they should
be rethinking the attention they pay
computer security and how architects
can work with software designers to
implement more-secure systems. Ar-
chitects (and everyone else) depend
too much on more information sys-
tems to willingly allow security to be
treated as anything less than a first-
class design concern.

Future Opportunities in
Computer Architecture
“What we have before us are some breath-
taking opportunities disguised as insoluble
problems.” —John Gardner, 1965

Inherent inefficiencies in general-
purpose processors, whether from ILP
techniques or multicore, combined
with the end of Dennard scaling and
Moore’s Law, make it highly unlikely,
in our view, that processor architects
and designers can sustain significant
rates of performance improvements in
general-purpose processors. Given the
importance of improving performance
to enable new software capabilities,
we must ask: What other approaches
might be promising?

There are two clear opportunities, as
well as a third created by combining the
two. First, existing techniques for build-
ing software make extensive use of high-

Overlooked Security
In the 1970s, processor architects
focused significant attention on en-
hancing computer security with con-
cepts ranging from protection rings
to capabilities. It was well under-
stood by these architects that most
bugs would be in software, but they
believed architectural support could
help. These features were largely un-
used by operating systems that were
deliberately focused on supposedly
benign environments (such as per-
sonal computers), and the features
involved significant overhead then, so
were eliminated. In the software com-
munity, many thought formal verifica-
tion and techniques like microkernels
would provide effective mechanisms
for building highly secure software.
Unfortunately, the scale of our collec-
tive software systems and the drive for
performance meant such techniques
could not keep up with processor per-
formance. The result is large software
systems continue to have many securi-
ty flaws, with the effect amplified due
to the vast and increasing amount of
personal information online and the
use of cloud-based computing, which
shares physical hardware among po-
tential adversaries.

Although computer architects and
others were perhaps slow to realize
the growing importance of security,
they began to include hardware sup-
port for virtual machines and encryp-
tion. Unfortunately, speculation in-
troduced an unknown but significant
security flaw into many processors. In
particular, the Meltdown and Spectre
security flaws led to new vulnerabili-
ties that exploit vulnerabilities in the
microarchitecture, allowing leakage
of protected information at a high
rate.14 Both Meltdown and Spectre use
so-called side-channel attacks where-
by information is leaked by observing
the time taken for a task and convert-
ing information invisible at the ISA
level into a timing visible attribute. In
2018, researchers showed how to ex-
ploit one of the Spectre variants to leak
information over a network without
the attacker loading code onto the tar-
get processor.34 Although this attack,
called NetSpectre, leaks information
slowly, the fact that it allows any ma-
chine on the same local-area network
(or within the same cluster in a cloud)

The end of Dennard
scaling meant
architects had to
find more efficient
ways to exploit
parallelism.

56 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

turing lecture

An interesting research direction
concerns whether some of the perfor-
mance gap can be closed with new com-
piler technology, possibly assisted by
architectural enhancements. Although
the challenges in efficiently translating
and implementing high-level scripting
languages like Python are difficult, the
potential gain is enormous. Achieving
even 25% of the potential gain could
result in Python programs running
tens to hundreds of times faster. This
simple example illustrates how great
the gap is between modern languages
emphasizing programmer productivity
and traditional approaches emphasiz-
ing performance.

Domain-specific architectures. A
more hardware-centric approach is to
design architectures tailored to a spe-
cific problem domain and offer signif-
icant performance (and efficiency)
gains for that domain, hence, the
name “domain-specific architectures”
(DSAs), a class of processors tailored
for a specific domain—programmable
and often Turing-complete but tai-
lored to a specific class of applica-
tions. In this sense, they differ from

application-specific integrated cir-
cuits (ASICs) that are often used for a
single function with code that rarely
changes. DSAs are often called acceler-
ators, since they accelerate some of an
application when compared to execut-
ing the entire application on a general-
purpose CPU. Moreover, DSAs can
achieve better performance because
they are more closely tailored to the
needs of the application; examples of
DSAs include graphics processing
units (GPUs), neural network proces-
sors used for deep learning, and pro-
cessors for software-defined networks
(SDNs). DSAs can achieve higher per-
formance and greater energy efficiency
for four main reasons:

First and most important, DSAs
exploit a more efficient form of par-
allelism for the specific domain. For
example, single-instruction multiple
data parallelism (SIMD), is more ef-
ficient than multiple instruction mul-
tiple data (MIMD) because it needs to
fetch only one instruction stream and
processing units operate in lockstep.9
Although SIMD is less flexible than
MIMD, it is a good match for many

level languages with dynamic typing and
storage management. Unfortunately,
such languages are typically interpreted
and execute very inefficiently. Leiserson
et al.24 used a small example—perform-
ing matrix multiply—to illustrate this
inefficiency. As in Figure 7, simply re-
writing the code in C from Python—a
typical high-level, dynamically typed lan-
guage—increases performance 47-fold.
Using parallel loops running on many
cores yields a factor of approximately
7. Optimizing the memory layout to ex-
ploit caches yields a factor of 20, and a
final factor of 9 comes from using the
hardware extensions for doing single in-
struction multiple data (SIMD) parallel-
ism operations that are able to perform
16 32-bit operations per instruction.
All told, the final, highly optimized ver-
sion runs more than 62,000× faster on
a multicore Intel processor compared
to the original Python version. This is of
course a small example, one might ex-
pect programmers to use an optimized
library for. Although it exaggerates the
usual performance gap, there are likely
many programs for which factors of 100
to 1,000 could be achieved.

Figure 8. Functional organization of Google Tensor Processing Unit (TPU v1).

P
C

Ie
In

te
rf

ac
e

H
os

t
In

te
rf

ac
e

14 GiB/s 30 GiB/s

30 GiB/s

14 GiB/s

Off-Chip I/O
Data Buffer

Control

Not to Scale

Computation

14 GiB/s

10 GiB/s

Control

Control Control

DDR3
Interfaces

Weight FIFO
(Weight Fetcher)

Unified Buffer
(Local

Activation
Storage)

Systolic
Array

Control

Matrix
Multiply Unit

(64K per cycle)

Accumulators D
R
A
M

port
ddr3
3%

D
R
A
M

port
ddr3
3%

Host
Interface

2%

Control 2% Activation Pipeline 6%

Misc. I/O 1%
PCIe

Interface 3%

Activation

Normalize/Pool

Control Control

In
st

r

165
GiB/s

165 GiB/s

Local Unified Buffer
for Activations

(96Kx256x8b = 24 MiB)
29% of chip

Matrix Multiply Unit
(256x256x8b = 64K MAC)

29%

Accumulators
(4Kx256x32b = 4 MiB)

6%

FEBRUARY 2019 | VOL. 62 | NO. 2 | COMMUNICATIONS OF THE ACM 57

turing lecture

to the processor efficiently. Examples
of DSLs include Matlab, a language for
operating on matrices, TensorFlow, a
dataflow language used for program-
ming DNNs, P4, a language for pro-
gramming SDNs, and Halide, a lan-
guage for image processing specifying
high-level transformations.

The challenge when using DSLs is
how to retain enough architecture in-
dependence that software written in
a DSL can be ported to different ar-
chitectures while also achieving high
efficiency in mapping the software
to the underlying DSA. For example,
the XLA system translates Tensorflow
to heterogeneous processors that
use Nvidia GPUs or Tensor Processor
Units (TPUs).40 Balancing portability
among DSAs along with efficiency is
an interesting research challenge for
language designers, compiler creators,
and DSA architects.

Example DSA: TPU v1. As an example
DSA, consider the Google TPU v1, which
was designed to accelerate neural net
inference.17,18 The TPU has been in
production since 2015 and powers ap-
plications ranging from search queries
to language translation to image recog-
nition to AlphaGo and AlphaZero, the
DeepMind programs for playing Go and
Chess. The goal was to improve the per-
formance and energy efficiency of deep
neural net inference by a factor of 10.

As shown in Figure 8, the TPU or-
ganization is radically different from a

DSAs. DSAs may also use VLIW ap-
proaches to ILP rather than specula-
tive out-of-order mechanisms. As men-
tioned earlier, VLIW processors are a
poor match for general-purpose code15
but for limited domains can be much
more efficient, since the control mech-
anisms are simpler. In particular, most
high-end general-purpose processors
are out-of-order superscalars that re-
quire complex control logic for both
instruction initiation and instruction
completion. In contrast, VLIWs per-
form the necessary analysis and sched-
uling at compile-time, which can work
well for an explicitly parallel program.

Second, DSAs can make more effec-
tive use of the memory hierarchy. Mem-
ory accesses have become much more
costly than arithmetic computations,
as noted by Horowitz.16 For example,
accessing a block in a 32-kilobyte cache
involves an energy cost approximately
200× higher than a 32-bit integer add.
This enormous differential makes
optimizing memory accesses critical
to achieving high-energy efficiency.
General-purpose processors run code
in which memory accesses typically ex-
hibit spatial and temporal locality but
are otherwise not very predictable at
compile time. CPUs thus use multilevel
caches to increase bandwidth and hide
the latency in relatively slow, off-chip
DRAMs. These multilevel caches often
consume approximately half the energy
of the processor but avoid almost all
accesses to the off-chip DRAMs that re-
quire approximately 10× the energy of a
last-level cache access.

Caches have two notable disadvan-
tages:

When datasets are very large. Caches
simply do not work well when datasets
are very large and also have low tempo-
ral or spatial locality; and

When caches work well. When
caches work well, the locality is very
high, meaning, by definition, most
of the cache is idle most of the time.

In applications where the memory-
access patterns are well defined and
discoverable at compile time, which
is true of typical DSLs, programmers
and compilers can optimize the use of
the memory better than can dynami-
cally allocated caches. DSAs thus usu-
ally use a hierarchy of memories with
movement controlled explicitly by the
software, similar to how vector pro-

cessors operate. For suitable applica-
tions, user-controlled memories can
use much less energy than caches.

Third, DSAs can use less precision
when it is adequate. General-purpose
CPUs usually support 32- and 64-bit in-
teger and floating-point (FP) data. For
many applications in machine learn-
ing and graphics, this is more accuracy
than is needed. For example, in deep
neural networks (DNNs), inference
regularly uses 4-, 8-, or 16-bit integers,
improving both data and computation-
al throughput. Likewise, for DNN train-
ing applications, FP is useful, but 32
bits is enough and 16 bits often works.

Finally, DSAs benefit from targeting
programs written in domain-specific
languages (DSLs) that expose more
parallelism, improve the structure and
representation of memory access, and
make it easier to map the application ef-
ficiently to a domain-specific processor.

Domain-Specific Languages
DSAs require targeting of high-level op-
erations to the architecture, but trying
to extract such structure and informa-
tion from a general-purpose language
like Python, Java, C, or Fortran is sim-
ply too difficult. Domain specific lan-
guages (DSLs) enable this process and
make it possible to program DSAs ef-
ficiently. For example, DSLs can make
vector, dense matrix, and sparse ma-
trix operations explicit, enabling the
DSL compiler to map the operations

Figure 9. Agile hardware development methodology.

Big Chip
Tape-Out

Tape-Out

Tape-In

ASIC Flow

FPGA

C++

58 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

turing lecture

amine and make complex trade-offs and
optimizations will be advantaged.

This opportunity has already led to
a surge of architecture innovation, at-
tracting many competing architectural
philosophies:

GPUs. Nvidia GPUs use many cores,
each with large register files, many
hardware threads, and caches;4

TPUs. Google TPUs rely on large
two-dimensional systolic multipli-
ers and software-controlled on-chip
memories;17

FPGAs. Microsoft deploys field pro-
grammable gate arrays (FPGAs) in its
data centers it tailors to neural network
applications;10 and

CPUs. Intel offers CPUs with many
cores enhanced by large multi-level
caches and one-dimensional SIMD in-
structions, the kind of FPGAs used by
Microsoft, and a new neural network
processor that is closer to a TPU than
to a CPU.19

In addition to these large players,
dozens of startups are pursuing their
own proposals.25 To meet growing de-
mand, architects are interconnecting
hundreds to thousands of such chips to
form neural-network supercomputers.

This avalanche of DNN architec-
tures makes for interesting times in
computer architecture. It is difficult to
predict in 2019 which (or even if any) of
these many directions will win, but the
marketplace will surely settle the com-
petition just as it settled the architec-
tural debates of the past.

Open Architectures
Inspired by the success of open source
software, the second opportunity in
computer architecture is open ISAs.
To create a “Linux for processors” the
field needs industry-standard open
ISAs so the community can create
open source cores, in addition to indi-
vidual companies owning proprietary
ones. If many organizations design
processors using the same ISA, the
greater competition may drive even
quicker innovation. The goal is to
provide processors for chips that cost
from a few cents to $100.

The first example is RISC-V (called
“RISC Five”), the fifth RISC architecture
developed at the University of Califor-
nia, Berkeley.32 RISC-V’s has a commu-
nity that maintains the architecture
under the stewardship of the RISC-V

Foundation (http://riscv.org/). Being
open allows the ISA evolution to occur
in public, with hardware and software
experts collaborating before decisions
are finalized. An added benefit of an
open foundation is the ISA is unlikely to
expand primarily for marketing reasons,
sometimes the only explanation for ex-
tensions of proprietary instruction sets.

RISC-V is a modular instruction set.
A small base of instructions run the full
open source software stack, followed by
optional standard extensions designers
can include or omit depending on their
needs. This base includes 32-bit address
and 64-bit address versions. RISC-V can
grow only through optional extensions;
the software stack still runs fine even if
architects do not embrace new exten-
sions. Proprietary architectures gener-
ally require upward binary compatibil-
ity, meaning when a processor company
adds new feature, all future processors
must also include it. Not so for RISC-V,
whereby all enhancements are optional
and can be deleted if not needed by an
application. Here are the standard ex-
tensions so far, using initials that stand
for their full names:

M. Integer multiply/divide;
A. Atomic memory operations;
F/D. Single/double-precision float-

ing-point; and
C. Compressed instructions.
A third distinguishing feature of

RISC-V is the simplicity of the ISA.
While not readily quantifiable, here are
two comparisons to the ARMv8 archi-
tecture, as developed by the ARM com-
pany contemporaneously:

Fewer instructions. RISC-V has many
fewer instructions. There are 50 in
the base that are surprisingly similar
in number and nature to the origi-
nal RISC-I.30 The remaining standard
extensions—M, A, F, and D—add 53
instructions, plus C added another 34,
totaling 137. ARMv8 has more than
500; and

Fewer instruction formats. RISC-V
has many fewer instruction formats,
six, while ARMv8 has at least 14.

Simplicity reduces the effort to both
design processors and verify hardware
correctness. As the RISC-V targets range
from data-center chips to IoT devices,
design verification can be a significant
part of the cost of development.

Fourth, RISC-V is a clean-slate de-
sign, starting 25 years later, letting its

general-purpose processor. The main
computational unit is a matrix unit,
a systolic array22 structure that pro-
vides 256 × 256 multiply-accumulates
every clock cycle. The combination of
8-bit precision, highly efficient sys-
tolic structure, SIMD control, and
dedication of significant chip area to
this function means the number of
multiply-accumulates per clock cycle
is approximately 100× what a general-
purpose single-core CPU can sustain.
Rather than caches, the TPU uses a lo-
cal memory of 24 megabytes, approxi-
mately double a 2015 general-purpose
CPU with the same power dissipa-
tion. Finally, both the activation
memory and the weight memory (in-
cluding a FIFO structure that holds
weights) are linked through user-
controlled high-bandwidth memory
channels. Using a weighted arith-
metic mean based on six common
inference problems in Google data
centers, the TPU is 29× faster than a
general-purpose CPU. Since the TPU
requires less than half the power, it
has an energy efficiency for this work-
load that is more than 80× better than a
general-purpose CPU.

Summary
We have considered two different ap-
proaches to improve program perfor-
mance by improving efficiency in the
use of hardware technology: First, by
improving the performance of modern
high-level languages that are typically
interpreted; and second, by building do-
main-specific architectures that greatly
improve performance and efficiency
compared to general-purpose CPUs.
DSLs are another example of how to im-
prove the hardware/software interface
that enables architecture innovations
like DSAs. Achieving significant gains
through such approaches will require
a vertically integrated design team that
understands applications, domain-
specific languages and related compil-
er technology, computer architecture
and organization, and the underlying
implementation technology. The need
to vertically integrate and make design
decisions across levels of abstraction
was characteristic of much of the early
work in computing before the industry
became horizontally structured. In this
new era, vertical integration has become
more important, and teams that can ex-

FEBRUARY 2019 | VOL. 62 | NO. 2 | COMMUNICATIONS OF THE ACM 59

turing lecture

tion in waterfall development. Small
programming teams quickly developed
working-but-incomplete prototypes and
got customer feedback before starting
the next iteration. The scrum version of
agile development assembles teams of
five to 10 programmers doing sprints of
two to four weeks per iteration.

Once again inspired by a software
success, the third opportunity is ag-
ile hardware development. The good
news for architects is that modern
electronic computer aided design
(ECAD) tools raise the level of abstrac-
tion, enabling agile development, and
this higher level of abstraction increas-
es reuse across designs.

It seems implausible to claim sprints
of four weeks to apply to hardware, giv-
en the months between when a design
is “taped out” and a chip is returned.
Figure 9 outlines how an agile develop-
ment method can work by changing the
prototype at the appropriate level.23 The
innermost level is a software simulator,
the easiest and quickest place to make
changes if a simulator could satisfy an
iteration. The next level is FPGAs that
can run hundreds of times faster than a
detailed software simulator. FPGAs can
run operating systems and full bench-
marks like those from the Standard
Performance Evaluation Corporation
(SPEC), allowing much more precise
evaluation of prototypes. Amazon Web
Services offers FPGAs in the cloud, so
architects can use FPGAs without need-
ing to first buy hardware and set up a
lab. To have documented numbers for
die area and power, the next outer level
uses the ECAD tools to generate a chip’s
layout. Even after the tools are run, some
manual steps are required to refine the
results before a new processor is ready to
be manufactured. Processor designers
call this next level a “tape in.” These first
four levels all support four-week sprints.

For research purposes, we could stop
at tape in, as area, energy, and perfor-
mance estimates are highly accurate.
However, it would be like running a
long race and stopping 100 yards be-
fore the finish line because the runner
can accurately predict the final time.
Despite all the hard work in race prepa-
ration, the runner would miss the thrill
and satisfaction of actually crossing the
finish line. One advantage hardware en-
gineers have over software engineers is
they build physical things. Getting chips

architects learn from mistakes of its
predecessors. Unlike first-generation
RISC architectures, it avoids microar-
chitecture or technology-dependent
features (such as delayed branches and
delayed loads) or innovations (such as
register windows) that were supersed-
ed by advances in compiler technology.

Finally, RISC-V supports DSAs by re-
serving a vast opcode space for custom
accelerators.

Beyond RISC-V, Nvidia also an-
nounced (in 2017) a free and open ar-
chitecture29 it calls Nvidia Deep Learn-
ing Accelerator (NVDLA), a scalable,
configurable DSA for machine-learning
inference. Configuration options in-
clude data type (int8, int16, or fp16)
and the size of the two-dimensional
multiply matrix. Die size scales from
0.5 mm2 to 3 mm2 and power from 20
milliWatts to 300 milliWatts. The ISA,
software stack, and implementation
are all open.

Open simple architectures are syn-
ergistic with security. First, security ex-
perts do not believe in security through
obscurity, so open implementations
are attractive, and open implementa-
tions require an open architecture.
Equally important is increasing the
number of people and organizations
who can innovate around secure ar-
chitectures. Proprietary architectures
limit participation to employees, but
open architectures allow all the best
minds in academia and industry to
help with security. Finally, the simplic-
ity of RISC-V makes its implementa-
tions easier to check. Moreover, the
open architectures, implementations,
and software stacks, plus the plasticity
of FPGAs, mean architects can deploy
and evaluate novel solutions online
and iterate them weekly instead of an-
nually. While FPGAs are 10× slower
than custom chips, such performance
is still fast enough to support online
users and thus subject security innova-
tions to real attackers. We expect open
architectures to become the exemplar
for hardware/software co-design by ar-
chitects and security experts.

Agile Hardware Development
The Manifesto for Agile Software Develop-
ment (2001) by Beck et al.1 revolution-
ized software development, overcoming
the frequent failure of the traditional
elaborate planning and documenta-

Security experts
do not believe in
security through
obscurity, so open
implementations
are attractive,
and open
implementations
require an open
architecture.

60 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

turing lecture

References
1. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A.,

Cunningham, W., Fowler, M. . . . and Kern, J. Manifesto
for Agile Software Development, 2001; https://
agilemanifesto.org/

2. Bhandarkar, D. and Clark, D.W. Performance from
architecture: Comparing a RISC and a CISC with
similar hardware organization. In Proceedings of the
Fourth International Conference on Architectural
Support for Programming Languages and Operating
Systems (Santa Clara, CA, Apr. 8–11). ACM Press,
New York, 1991, 310–319.

3. Chaitin, G. et al. Register allocation via coloring.
Computer Languages 6, 1 (Jan. 1981), 47–57.

4. Dally, W. et al. Hardware-enabled artificial intelligence.
In Proceedings of the Symposia on VLSI Technology
and Circuits (Honolulu, HI, June 18–22). IEEE Press,
2018, 3–6.

5. Dennard, R. et al. Design of ion-implanted MOSFETs
with very small physical dimensions. IEEE Journal of
Solid State Circuits 9, 5 (Oct. 1974), 256–268.

6. Emer, J. and Clark, D. A characterization of processor
performance in the VAX-11/780. In Proceedings
of the 11th International Symposium on Computer
Architecture (Ann Arbor, MI, June). ACM Press, New
York, 1984, 301–310.

7. Fisher, J. The VLIW machine: A multiprocessor for
compiling scientific code. Computer 17, 7 (July 1984),
45–53.

8. Fitzpatrick, D.T., Foderaro, J.K., Katevenis, M.G.,
Landman, H.A., Patterson, D.A., Peek, J.B., Peshkess,
Z., Séquin, C.H., Sherburne, R.W., and Van Dyke, K.S. A
RISCy approach to VLSI. ACM SIGARCH Computer
Architecture News 10, 1 (Jan. 1982), 28–32.

9. Flynn, M. Some computer organizations and their
effectiveness. IEEE Transactions on Computers 21, 9
(Sept. 1972), 948–960.

10. Fowers, J. et al. A configurable cloud-scale DNN
processor for real-time AI. In Proceedings of the
45th ACM/IEEE Annual International Symposium on
Computer Architecture (Los Angeles, CA, June 2–6).
IEEE, 2018, 1–14.

11. Hennessy, J. and Patterson, D. A New Golden Age for
Computer Architecture. Turing Lecture delivered at
the 45th ACM/IEEE Annual International Symposium
on Computer Architecture (Los Angeles, CA, June 4,
2018); http://iscaconf.org/isca2018/turing_lecture.html;
https://www.youtube.com/watch?v=3LVeEjsn8Ts

12. Hennessy, J., Jouppi, N., Przybylski, S., Rowen,
C., Gross, T., Baskett, F., and Gill, J. MIPS: A
microprocessor architecture. ACM SIGMICRO
Newsletter 13, 4 (Oct. 5, 1982), 17–22.

13. Hennessy, J. and Patterson, D. Computer Architecture:
A Quantitative Approach. Morgan Kauffman, San
Francisco, CA, 1989.

14. Hill, M. A primer on the meltdown and Spectre
hardware security design flaws and their important
implications, Computer Architecture Today blog (Feb.
15, 2018); https://www.sigarch.org/a-primer-on-the-
meltdown-spectre-hardware-security-design-flaws-
and-their-important-implications/

15. Hopkins, M. A critical look at IA-64: Massive
resources, massive ILP, but can it deliver?
Microprocessor Report 14, 2 (Feb. 7, 2000), 1–5.

16. Horowitz M. Computing’s energy problem (and what
we can do about it). In Proceedings of the IEEE
International Solid-State Circuits Conference Digest of
Technical Papers (San Francisco, CA, Feb. 9–13). IEEE
Press, 2014, 10–14.

17. Jouppi, N., Young, C., Patil, N., and Patterson, D. A
domain-specific architecture for deep neural networks.
Commun. ACM 61, 9 (Sept. 2018), 50–58.

18. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., and Boyle, R. In-datacenter performance analysis
of a tensor processing unit. In Proceedings of the
44th ACM/IEEE Annual International Symposium on
Computer Architecture (Toronto, ON, Canada, June
24–28). IEEE Computer Society, 2017, 1–12.

19. Kloss, C. Nervana Engine Delivers Deep Learning at
Ludicrous Speed. Intel blog, May 18, 2016;
https://ai.intel.com/nervana-engine-delivers-deep-
learning-at-ludicrous-speed/

20. Knuth, D. The Art of Computer Programming:
Fundamental Algorithms, First Edition. Addison
Wesley, Reading, MA, 1968.

21. Knuth, D. and Binstock, A. Interview with Donald
Knuth. InformIT, Hoboken, NJ, 2010; http://www.
informit.com/articles/article.aspx

22. Kung, H. and Leiserson, C. Systolic arrays (for VLSI).
Chapter in Sparse Matrix Proceedings Vol. 1. Society

for Industrial and Applied Mathematics, Philadelphia,
PA, 1979, 256–282.

23. Lee, Y., Waterman, A., Cook, H., Zimmer, B., Keller,
B., Puggelli, A. . . . and Chiu, P. An agile approach to
building RISC-V microprocessors. IEEE Micro 36, 2
(Feb. 2016), 8–20.

24. Leiserson, C. et al. There’s plenty of room at the top.
To appear.

25. Metz, C. Big bets on A.I. open a new frontier for chip
start-ups, too. The New York Times (Jan. 14, 2018).

26. Moore, G. Cramming more components onto
integrated circuits. Electronics 38, 8 (Apr. 19, 1965),
56–59.

27. Moore, G. No exponential is forever: But ‘forever’ can
be delayed! [semiconductor industry]. In Proceedings
of the IEEE International Solid-State Circuits
Conference Digest of Technical Papers (San Francisco,
CA, Feb. 13). IEEE, 2003, 20–23.

28. Moore, G. Progress in digital integrated electronics. In
Proceedings of the International Electronic Devices
Meeting (Washington, D.C., Dec.). IEEE, New York,
1975, 11–13.

29. Nvidia. Nvidia Deep Learning Accelerator (NVDLA),
2017; http://nvdla.org/

30. Patterson, D. How Close is RISC-V to RISC-I?
ASPIRE blog, June 19, 2017; https://aspire.eecs.
berkeley.edu/2017/06/how-close-is-risc-v-to-risc-i/

31. Patterson, D. RISCy history. Computer Architecture
Today blog, May 30, 2018; https://www.sigarch.org/
riscy-history/

32. Patterson, D. and Waterman, A. The RISC-V Reader:
An Open Architecture Atlas. Strawberry Canyon LLC,
San Francisco, CA, 2017.

33. Rowen, C., Przbylski, S., Jouppi, N., Gross, T.,
Shott, J., and Hennessy, J. A pipelined 32b NMOS
microprocessor. In Proceedings of the IEEE
International Solid-State Circuits Conference Digest
of Technical Papers (San Francisco, CA, Feb. 22–24)
IEEE, 1984, 180–181.

34. Schwarz, M., Schwarzl, M., Lipp, M., and Gruss, D.
Netspectre: Read arbitrary memory over network. arXiv
preprint, 2018; https://arxiv.org/pdf/1807.10535.pdf

35. Sherburne, R., Katevenis, M., Patterson, D., and Sequin,
C. A 32b NMOS microprocessor with a large register
file. In Proceedings of the IEEE International Solid-
State Circuits Conference (San Francisco, CA, Feb.
22–24). IEEE Press, 1984, 168–169.

36. Thacker, C., MacCreight, E., and Lampson, B. Alto:
A Personal Computer. CSL-79-11, Xerox Palo Alto
Research Center, Palo Alto, CA, Aug. 7,1979; http://
people.scs.carleton.ca/~soma/distos/fall2008/alto.pdf

37. Turner, P., Parseghian, P., and Linton, M. Protecting
against the new ‘L1TF’ speculative vulnerabilities.
Google blog, Aug. 14, 2018; https://cloud.google.com/
blog/products/gcp/protectingagainst-the-new-l1tf-
speculative-vulnerabilities

38. Van Bulck, J. et al. Foreshadow: Extracting the keys
to the Intel SGX kingdom with transient out-of-order
execution. In Proceedings of the 27th USENIX Security
Symposium (Baltimore, MD, Aug. 15–17). USENIX
Association, Berkeley, CA, 2018.

39. Wilkes, M. and Stringer, J. Micro-programming and the
design of the control circuits in an electronic digital
computer. Mathematical Proceedings of the Cambridge
Philosophical Society 49, 2 (Apr. 1953), 230–238.

40. XLA Team. XLA – TensorFlow. Mar. 6, 2017; https://
developers.googleblog.com/2017/03/xlatensorflow-
compiled.html

John L. Hennessy (hennnessy@stanford.edu) is
Past-President of Stanford University, Stanford, CA, USA,
and is Chairman of Alphabet Inc., Mountain View, CA, USA.

David A. Patterson (pattrsn@berkeley.edu) is the Pardee
Professor of Computer Science, Emeritus at the University
of California, Berkeley, CA, USA, and a Distinguished
Engineer at Google, Mountain View, CA, USA.

© 2019 ACM 0001-0782/19/2 $15.00

back to measure, run real programs,
and show to their friends and family is
a great joy of hardware design.

Many researchers assume they must
stop short because fabricating chips is
unaffordable. When designs are small,
they are surprisingly inexpensive. Archi-
tects can order 100 1-mm2 chips for only
$14,000. In 28 nm, 1 mm2 holds millions
of transistors, enough area for both a
RISC-V processor and an NVLDA accel-
erator. The outermost level is expensive
if the designer aims to build a large chip,
but an architect can demonstrate many
novel ideas with small chips.

Conclusion
“The darkest hour is just before the
dawn.” —Thomas Fuller, 1650

To benefit from the lessons of his-
tory, architects must appreciate that
software innovations can also inspire
architects, that raising the abstraction
level of the hardware/software interface
yields opportunities for innovation, and
that the marketplace ultimately settles
computer architecture debates. The
iAPX-432 and Itanium illustrate how
architecture investment can exceed re-
turns, while the S/360, 8086, and ARM
deliver high annual returns lasting de-
cades with no end in sight.

The end of Dennard scaling and
Moore’s Law and the deceleration of per-
formance gains for standard micropro-
cessors are not problems that must be
solved but facts that, recognized, offer
breathtaking opportunities. High-level,
domain-specific languages and archi-
tectures, freeing architects from the
chains of proprietary instruction sets,
along with demand from the public for
improved security, will usher in a new
golden age for computer architects.
Aided by open source ecosystems, ag-
ilely developed chips will convincingly
demonstrate advances and thereby
accelerate commercial adoption. The
ISA philosophy of the general-purpose
processors in these chips will likely be
RISC, which has stood the test of time.
Expect the same rapid improvement as
in the last golden age, but this time in
terms of cost, energy, and security, as
well as in performance.

The next decade will see a Cambri-
an explosion of novel computer archi-
tectures, meaning exciting times for
computer architects in academia and
in industry.

To watch Hennessy and
Patterson’s full Turing Lecture, see
https://www.acm.org/hennessy-
patterson-turing-lecture

