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engineers, including ACM A.M. Tur-
ing Award laureate Fred Brooks, Jr., 
thought they could create a single ISA 
that would efficiently unify all four of 
these ISA bases. 

They needed a technical solution 
for how computers as inexpensive as 

WE BEGAN OUR Turing Lecture June 4, 201811 with a review 
of computer architecture since the 1960s. In addition 
to that review, here, we highlight current challenges 
and identify future opportunities, projecting another 
golden age for the field of computer architecture in 
the next decade, much like the 1980s when we did the 
research that led to our award, delivering gains in cost, 
energy, and security, as well as performance. 

“Those who cannot remember the past are condemned 
to repeat it.”  —George Santayana, 1905 

Software talks to hardware through a vocabulary 
called an instruction set architecture (ISA). By the early 
1960s, IBM had four incompatible lines of computers, 
each with its own ISA, software stack, I/O system, 
and market niche—targeting small business, large 
business, scientific, and real time, respectively. IBM 
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ly 6. The most expensive computers 
had the widest control stores because 
more complicated data paths used 
more control lines. The least-costly 
computers had narrower control 
stores due to simpler hardware but 
needed more microinstructions since 
they took more clock cycles to execute 
a System/360 instruction. 

Facilitated by microprogramming, 
IBM bet the future of the company 
that the new ISA would revolutionize 
the computing industry and won the 
bet. IBM dominated its markets, and 
IBM mainframe descendants of the 
computer family announced 55 years 

those with 8-bit data paths and as fast 
as those with 64-bit data paths could 
share a single ISA. The data paths are 
the “brawn” of the processor in that 
they perform the arithmetic but are rela-
tively easy to “widen” or “narrow.” The 
greatest challenge for computer de-
signers then and now is the “brains” 
of the processor—the control hard-
ware. Inspired by software program-
ming, computing pioneer and Turing 
laureate Maurice Wilkes proposed 
how to simplify control. Control was 
specified as a two-dimensional ar-
ray he called a “control store.” Each 
column of the array corresponded to 

one control line, each row was a mi-
croinstruction, and writing microin-
structions was called microprogram-
ming.39 A control store contains an 
ISA interpreter written using micro-
instructions, so execution of a con-
ventional instruction takes several mi-
croinstructions. The control store was 
implemented through memory, which 
was much less costly than logic gates. 

The table here lists four models 
of the new System/360 ISA IBM an-
nounced April 7, 1964. The data paths 
vary by a factor of 8, memory capacity 
by a factor of 16, clock rate by nearly 4, 
performance by 50, and cost by near-
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ated for the Xerox Palo Alto Research 
Center in 1973. It was indeed the first 
personal computer, sporting the first 
bit-mapped display and first Ethernet 
local-area network. The device control-
lers for the novel display and network 
were microprograms stored in a 4,096-
word × 32-bit WCS. 

Microprocessors were still in the 
8-bit era in the 1970s (such as the In-
tel 8080) and programmed primarily 
in assembly language. Rival design-
ers would add novel instructions to 
outdo one another, showing their ad-
vantages through assembly language 
examples. 

Gordon Moore believed Intel’s 
next ISA would last the lifetime of 
Intel, so he hired many clever com-
puter science Ph.D.’s and sent them 
to a new facility in Portland to invent 
the next great ISA. The 8800, as Intel 
originally named it, was an ambi-
tious computer architecture project 
for any era, certainly the most ag-
gressive of the 1980s. It had 32-bit 
capability-based addressing, ob-
ject-oriented architecture, variable-
bit-length instructions, and its own 

operating system written in the then-
new programming language Ada. 

This ambitious project was alas sev-
eral years late, forcing Intel to start an 
emergency replacement effort in Santa 
Clara to deliver a 16-bit microproces-
sor in 1979. Intel gave the new team 52 
weeks to develop the new “8086” ISA 
and design and build the chip. Given 
the tight schedule, designing the ISA 
took only 10 person-weeks over three 
regular calendar weeks, essentially by 
extending the 8-bit registers and in-
struction set of the 8080 to 16 bits. The 
team completed the 8086 on schedule 
but to little fanfare when announced. 

To Intel’s great fortune, IBM was 
developing a personal computer to 
compete with the Apple II and needed 
a 16-bit microprocessor. IBM was in-
terested in the Motorola 68000, which 
had an ISA similar to the IBM 360, but 
it was behind IBM’s aggressive sched-
ule. IBM switched instead to an 8-bit 
bus version of the 8086. When IBM an-
nounced the PC on August 12, 1981, the 
hope was to sell 250,000 PCs by 1986. 
The company instead sold 100 million 
worldwide, bestowing a very bright fu-
ture on the emergency replacement 
Intel ISA. 

Intel’s original 8800 project was 
renamed iAPX-432 and finally an-
nounced in 1981, but it required sev-
eral chips and had severe performance 
problems. It was discontinued in 1986, 
the year after Intel extended the 16-
bit 8086 ISA in the 80386 by expand-
ing its registers from 16 bits to 32 bits. 
Moore’s prediction was thus correct 
that the next ISA would last as long as 
Intel did, but the marketplace chose 
the emergency replacement 8086 rath-
er than the anointed 432. As the archi-
tects of the Motorola 68000 and iAPX-
432 both learned, the marketplace is 
rarely patient. 

From complex to reduced instruc-
tion set computers. The early 1980s 
saw several investigations into com-
plex instruction set computers (CISC) 
enabled by the big microprograms in 
the larger control stores. With Unix 
demonstrating that even operating sys-
tems could use high-level languages, 
the critical question became: “What in-
structions would compilers generate?” 
instead of “What assembly language 
would programmers use?” Significant-
ly raising the hardware/software inter-

ago still bring in $10 billion in rev-
enue per year. 

As seen repeatedly, although the 
marketplace is an imperfect judge of 
technological issues, given the close 
ties between architecture and com-
mercial computers, it eventually deter-
mines the success of architecture inno-
vations that often require significant 
engineering investment.

Integrated circuits, CISC, 432, 8086, 
IBM PC. When computers began us-
ing integrated circuits, Moore’s Law 
meant control stores could become 
much larger. Larger memories in turn 
allowed much more complicated ISAs. 
Consider that the control store of the 
VAX-11/780 from Digital Equipment 
Corp. in 1977 was 5,120 words × 96 
bits, while its predecessor used only 
256 words × 56 bits. 

Some manufacturers chose to make 
microprogramming available by let-
ting select customers add custom 
features they called “writable control 
store” (WCS). The most famous WCS 
computer was the Alto36 Turing laure-
ates Chuck Thacker and Butler Lamp-
son, together with their colleagues, cre-

Features of four models of the IBM System/360 family; IPS is instructions per second. 

Model M30 M40 M50 M65

Datapath width 8 bits 16 bits 32 bits 64 bits

Control store size 4k x 50 4k x 52 2.75k x 85 2.75k x 87

Clock rate  
(ROM cycle time)

1.3 MHz  
(750 ns)

1.6 MHz  
(625 ns) 

2 MHz  
(500 ns)

5 MHz  
(200 ns) 

Memory capacity 8–64 KiB 16–256 KiB 64–512 KiB 128–1,024 KiB

Performance (commercial) 29,000 IPS 75,000 IPS 169,000 IPS 567,000 IPS

Performance (scientific) 10,200 IPS 40,000 IPS 133,000 IPS 563,000 IPS

Price (1964 $) $192,000 $216,000 $460,000 $1,080,000

Price (2018 $) $1,560,000 $1,760,000 $3,720,000 $8,720,000

Figure 1. University of California, Berkeley, RISC-I and Stanford University MIPS 
microprocessors. 
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datapath, along with instruction and 
data caches, in a single chip. 

For example, Figure 1 shows the 
RISC-I8 and MIPS12 microprocessors 
developed at the University of Califor-
nia, Berkeley, and Stanford University 
in 1982 and 1983, respectively, that 
demonstrated the benefits of RISC. 
These chips were eventually presented 
at the leading circuit conference, the 
IEEE International Solid-State Circuits 
Conference, in 1984.33,35 It was a re-
markable moment when a few gradu-
ate students at Berkeley and Stanford 
could build microprocessors that were 
arguably superior to what industry 
could build. 

These academic chips inspired 
many companies to build RISC micro-
processors, which were the fastest for 
the next 15 years. The explanation is 
due to the following formula for pro-
cessor performance: 

Time/Program = Instructions / 
Program × (Clock cycles) / 

Instruction × Time / (Clock cycle) 
DEC engineers later showed2 that 

the more complicated CISC ISA execut-
ed about 75% of the number instruc-
tions per program as RISC (the first 
term), but in a similar technology CISC 
executed about five to six more clock 
cycles per instruction (the second 
term), making RISC microprocessors 
approximately 4× faster. 

Such formulas were not part of com-
puter architecture books in the 1980s, 
leading us to write Computer Architec-
ture: A Quantitative Approach13 in 1989. 
The subtitle suggested the theme of the 
book: Use measurements and bench-
marks to evaluate trade-offs quanti-
tatively instead of relying more on the 
architect’s intuition and experience, as 
in the past. The quantitative approach 
we used was also inspired by what Tur-
ing laureate Donald Knuth’s book had 
done for algorithms.20 

VLIW, EPIC, Itanium. The next ISA 
innovation was supposed to succeed 
both RISC and CISC. Very long instruc-
tion word (VLIW)7 and its cousin, the 
explicitly parallel instruction computer 
(EPIC), the name Intel and Hewlett 
Packard gave to the approach, used wide 
instructions with multiple independent 
operations bundled together in each 
instruction. VLIW and EPIC advocates 
at the time believed if a single instruc-
tion could specify, say, six independent 

face created an opportunity for archi-
tecture innovation. 

Turing laureate John Cocke and his 
colleagues developed simpler ISAs and 
compilers for minicomputers. As an 
experiment, they retargeted their re-
search compilers to use only the simple 
register-register operations and load-
store data transfers of the IBM 360 ISA, 
avoiding the more complicated instruc-
tions. They found that programs ran up 
to three times faster using the simple 
subset. Emer and Clark6 found 20% of 
the VAX instructions needed 60% of the 
microcode and represented only 0.2% 
of the execution time. One author (Pat-
terson) spent a sabbatical at DEC to 
help reduce bugs in VAX microcode. If 
microprocessor manufacturers were 
going to follow the CISC ISA designs 
of the larger computers, he thought 
they would need a way to repair the 
microcode bugs. He wrote such a 
paper,31 but the journal Computer 
rejected it. Reviewers opined that it was 
a terrible idea to build microproces-
sors with ISAs so complicated that they 
needed to be repaired in the field. That 
rejection called into question the value 
of CISC ISAs for microprocessors. Iron-
ically, modern CISC microprocessors 
do indeed include microcode repair 
mechanisms, but the main result of his 
paper rejection was to inspire him to 
work on less-complex ISAs for micro-
processors—reduced instruction set 
computers (RISC). 

These observations and the shift to 
high-level languages led to the opportu-
nity to switch from CISC to RISC. First, 
the RISC instructions were simplified 
so there was no need for a microcod-
ed interpreter. The RISC instructions 
were typically as simple as microin-
structions and could be executed di-
rectly by the hardware. Second, the 
fast memory, formerly used for the 
microcode interpreter of a CISC ISA, 
was repurposed to be a cache of RISC 
instructions. (A cache is a small, fast 
memory that buffers recently execut-
ed instructions, as such instructions 
are likely to be reused soon.) Third, 
register allocators based on Gregory 
Chaitin’s graph-coloring scheme made 
it much easier for compilers to efficient-
ly use registers, which benefited these 
register-register ISAs.3 Finally, Moore’s 
Law meant there were enough transis-
tors in the 1980s to include a full 32-bit 

In today’s post-PC 
era, x86 shipments 
have fallen almost 
10% per year since 
the peak in 2011, 
while chips with 
RISC processors 
have skyrocketed  
to 20 billion.
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tion of the RISC microinstructions. 
Any ideas RISC designers were using 
for performance—separate instruc-
tion and data caches, second-level 
caches on chip, deep pipelines, and 
fetching and executing several in-
structions simultaneously—could 
then be incorporated into the x86. 
AMD and Intel shipped roughly 350 
million x86 microprocessors annually 
at the peak of the PC era in 2011. The 
high volumes and low margins of the 
PC industry also meant lower prices 
than RISC computers. 

Given the hundreds of millions 
of PCs sold worldwide each year, PC 
software became a giant market. 
Whereas software providers for the 
Unix marketplace would offer differ-
ent software versions for the differ-
ent commercial RISC ISAs—Alpha, 
HP-PA, MIPS, Power, and SPARC—the 
PC market enjoyed a single ISA, so 
software developers shipped “shrink 
wrap” software that was binary com-
patible with only the x86 ISA. A much 
larger software base, similar perfor-
mance, and lower prices led the x86 
to dominate both desktop computers 
and small-server markets by 2000. 

Apple helped launch the post-PC 
era with the iPhone in 2007. Instead of 
buying microprocessors, smartphone 
companies built their own systems 
on a chip (SoC) using designs from 
other companies, including RISC 
processors from ARM. Mobile-device 
designers valued die area and energy 
efficiency as much as performance, 
disadvantaging CISC ISAs. Moreover, 
arrival of the Internet of Things vastly 
increased both the number of proces-
sors and the required trade-offs in die 
size, power, cost, and performance. 
This trend increased the importance 
of design time and cost, further dis-
advantaging CISC processors. In to-
day’s post-PC era, x86 shipments have 
fallen almost 10% per year since the 
peak in 2011, while chips with RISC 
processors have skyrocketed to 20 bil-
lion. Today, 99% of 32-bit and 64-bit 
processors are RISC. 

Concluding this historical review, 
we can say the marketplace settled the 
RISC-CISC debate; CISC won the later 
stages of the PC era, but RISC is win-
ning the post-PC era. There have been 
no new CISC ISAs in decades. To our 
surprise, the consensus on the best 

to write.” Pundits noted delays and 
underperformance of Itanium and re-
christened it “Itanic” after the ill-fated 
Titantic passenger ship. The market-
place again eventually ran out of pa-
tience, leading to a 64-bit version of 
the x86 as the successor to the 32-bit 
x86, and not Itanium. 

The good news is VLIW still matches 
narrower applications with small pro-
grams and simpler branches and omit 
caches, including digital-signal processing. 

RISC vs. CISC in the   
PC and Post-PC Eras 
AMD and Intel used 500-person de-
sign teams and superior semicon-
ductor technology to close the per-
formance gap between x86 and RISC. 
Again inspired by the performance 
advantages of pipelining simple vs. 
complex instructions, the instruction 
decoder translated the complex x86 
instructions into internal RISC-like 
microinstructions on the fly. AMD 
and Intel then pipelined the execu-

operations—two data transfers, two in-
teger operations, and two floating point 
operations—and compiler technology 
could efficiently assign operations into 
the six instruction slots, the hardware 
could be made simpler. Like the RISC 
approach, VLIW and EPIC shifted work 
from the hardware to the compiler. 

Working together, Intel and Hewlett 
Packard designed a 64-bit processor based 
on EPIC ideas to replace the 32-bit x86. 
High expectations were set for the first 
EPIC processor, called Itanium by In-
tel and Hewlett Packard, but the real-
ity did not match its developers’ early 
claims. Although the EPIC approach 
worked well for highly structured 
floating-point programs, it struggled 
to achieve high performance for in-
teger programs that had less predict-
able cache misses or less-predictable 
branches. As Donald Knuth later 
noted:21 “The Itanium approach ... 
was supposed to be so terrific—un-
til it turned out that the wished-for 
compilers were basically impossible 

Figure 3. Transistors per chip and power per mm2. 
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cluding approximately 15 branches, 
as they represent approximately 25% 
of executed instructions. To keep the 
pipeline full, branches are predicted 
and code is speculatively placed into 
the pipeline for execution. The use 
of speculation is both the source of 
ILP performance and of inefficiency. 
When branch prediction is perfect, 
speculation improves performance 
yet involves little added energy cost—
it can even save energy—but when it 
“mispredicts” branches, the proces-
sor must throw away the incorrectly 
speculated instructions, and their 
computational work and energy are 
wasted. The internal state of the pro-
cessor must also be restored to the 
state that existed before the mispre-
dicted branch, expending additional 
time and energy. 

To see how challenging such a design 
is, consider the difficulty of correctly 

ISA principles for general-purpose 
processors today is still RISC, 35 years 
after their introduction.

Current Challenges for  
Processor Architecture 
“If a problem has no solution, it may 
not be a problem, but a fact—not to be 
solved, but to be coped with over time.” 
 —Shimon Peres 

While the previous section focused 
on the design of the instruction set 
architecture (ISA), most computer 
architects do not design new ISAs 
but implement existing ISAs in the 
prevailing implementation technol-
ogy. Since the late 1970s, the technol-
ogy of choice has been metal oxide 
semiconductor (MOS)-based inte-
grated circuits, first n-type metal–ox-
ide semiconductor (nMOS) and then 
complementary metal–oxide semi-
conductor (CMOS). The stunning rate 
of improvement in MOS technology—
captured in Gordon Moore’s predic-
tions—has been the driving factor 
enabling architects to design more-
aggressive methods for achieving 
performance for a given ISA. Moore’s 
original prediction in 196526 called 
for a doubling in transistor density 
yearly; in 1975, he revised it, project-
ing a doubling every two years.28 It 
eventually became called Moore’s 
Law. Because transistor density grows 
quadratically while speed grows lin-
early, architects used more transis-
tors to improve performance.

End of Moore’s Law and  
Dennard Scaling 
Although Moore’s Law held for many 
decades (see Figure 2), it began to slow 
sometime around 2000 and by 2018 
showed a roughly 15-fold gap between 
Moore’s prediction and current capa-
bility, an observation Moore made in 
2003 that was inevitable.27 The current 
expectation is that the gap will con-
tinue to grow as CMOS technology ap-
proaches fundamental limits. 

Accompanying Moore’s Law was a 
projection made by Robert Dennard 
called “Dennard scaling,”5 stating that 
as transistor density increased, power 
consumption per transistor would 
drop, so the power per mm2 of sili-
con would be near constant. Since the 
computational capability of a mm2 of 
silicon was increasing with each new 

generation of technology, computers 
would become more energy efficient. 
Dennard scaling began to slow sig-
nificantly in 2007 and faded to almost 
nothing by 2012 (see Figure 3). 

Between 1986 and about 2002, the 
exploitation of instruction level paral-
lelism (ILP) was the primary architec-
tural method for gaining performance 
and, along with improvements in speed 
of transistors, led to an annual perfor-
mance increase of approximately 50%. 
The end of Dennard scaling meant ar-
chitects had to find more efficient ways 
to exploit parallelism. 

To understand why increasing ILP 
caused greater inefficiency, consider 
a modern processor core like those 
from ARM, Intel, and AMD. Assume it 
has a 15-stage pipeline and can issue 
four instructions every clock cycle. It 
thus has up to 60 instructions in the 
pipeline at any moment in time, in-

Figure 4. Wasted instructions as a percentage of all instructions completed on an Intel 
Core i7 for a variety of SPEC integer benchmarks. 
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ent approach to achieve performance 
improvements. The multicore era was 
thus born. 

Multicore shifted responsibility for 
identifying parallelism and deciding 
how to exploit it to the programmer 
and to the language system. Multicore 
does not resolve the challenge of ener-
gy-efficient computation that was exac-
erbated by the end of Dennard scaling. 
Each active core burns power whether 
or not it contributes effectively to the 
computation. A primary hurdle is an 
old observation, called Amdahl’s Law, 
stating that the speedup from a paral-
lel computer is limited by the portion 
of a computation that is sequential. 
To appreciate the importance of this 
observation, consider Figure 5, show-
ing how much faster an application 
runs with up to 64 cores compared to 

a single core, assuming different por-
tions of serial execution, where only 
one processor is active. For example, 
when only 1% of the time is serial, the 
speedup for a 64-processor configura-
tion is about 35. Unfortunately, the 
power needed is proportional to 64 
processors, so approximately 45% of 
the energy is wasted. 

Real programs have more complex 
structures of course, with portions 
that allow varying numbers of proces-
sors to be used at any given moment 
in time. Nonetheless, the need to com-
municate and synchronize periodically 
means most applications have some 
portions that can effectively use only 
a fraction of the processors. Although 
Amdahl’s Law is more than 50 years 
old, it remains a difficult hurdle. 

With the end of Dennard scaling, 
increasing the number of cores on a 
chip meant power is also increasing 
at nearly the same rate. Unfortunately, 
the power that goes into a processor 
must also be removed as heat. Mul-
ticore processors are thus limited by 
the thermal dissipation power (TDP), 
or average amount of power the pack-
age and cooling system can remove. 
Although some high-end data centers 
may use more advanced packages and 
cooling technology, no computer us-
ers would want to put a small heat 
exchanger on their desks or wear a ra-
diator on their backs to cool their cell-
phones. The limit of TDP led directly 
to the era of “dark silicon,” whereby 
processors would slow on the clock 
rate and turn off idle cores to prevent 
overheating. Another way to view this 
approach is that some chips can real-
locate their precious power from the 
idle cores to the active ones. 

An era without Dennard scaling, 
along with reduced Moore’s Law and 
Amdahl’s Law in full effect means 
inefficiency limits improvement in 
performance to only a few percent 
per year (see Figure 6). Achieving 
higher rates of performance improve-
ment—as was seen in the 1980s and 
1990s—will require new architec-
tural approaches that use the inte-
grated-circuit capability much more 
efficiently. We will return to what ap-
proaches might work after discussing 
another major shortcoming of mod-
ern computers—their support, or 
lack thereof, for computer security. 

predicting the outcome of 15 branches. 
If a processor architect wants to limit 
wasted work to only 10% of the time, 
the processor must predict each branch 
correctly 99.3% of the time. Few general-
purpose programs have branches that 
can be predicted so accurately. 

To appreciate how this wasted work 
adds up, consider the data in Figure 4, 
showing the fraction of instructions 
that are effectively executed but turn 
out to be wasted because the proces-
sor speculated incorrectly. On average, 
19% of the instructions are wasted for 
these benchmarks on an Intel Core i7. 
The amount of wasted energy is great-
er, however, since the processor must 
use additional energy to restore the 
state when it speculates incorrectly. 
Measurements like these led many to 
conclude architects needed a differ-

Figure 6. Growth of computer performance using integer programs (SPECintCPU). 

Figure 7. Potential speedup of matrix multiply in Python for four optimizations. 
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to be attacked creates many new vul-
nerabilities. Two more vulnerabilities 
in the virtual-machine architecture 
were subsequently reported.37,38 One 
of them, called Foreshadow, allows 
penetration of the Intel SGX security 
mechanisms designed to protect the 
highest risk data (such as encryption 
keys). New vulnerabilities are being 
discovered monthly. 

Side-channel attacks are not new, 
but in most earlier cases, a software 
flaw allowed the attack to succeed. In 
the Meltdown, Spectre, and other at-
tacks, it is a flaw in the hardware im-
plementation that exposes protected 
information. There is a fundamental 
difficulty in how processor architects 
define what is a correct implementa-
tion of an ISA because the standard 
definition says nothing about the 
performance effects of executing an 
instruction sequence, only about the 
ISA-visible architectural state of the 
execution. Architects need to rethink 
their definition of a correct implemen-
tation of an ISA to prevent such securi-
ty flaws. At the same time, they should 
be rethinking the attention they pay 
computer security and how architects 
can work with software designers to 
implement more-secure systems. Ar-
chitects (and everyone else) depend 
too much on more information sys-
tems to willingly allow security to be 
treated as anything less than a first-
class design concern. 

Future Opportunities in  
Computer Architecture 
“What we have before us are some breath-
taking opportunities disguised as insoluble 
problems.”  —John Gardner, 1965 

Inherent inefficiencies in general-
purpose processors, whether from ILP 
techniques or multicore, combined 
with the end of Dennard scaling and 
Moore’s Law, make it highly unlikely, 
in our view, that processor architects 
and designers can sustain significant 
rates of performance improvements in 
general-purpose processors. Given the 
importance of improving performance 
to enable new software capabilities, 
we must ask: What other approaches 
might be promising? 

There are two clear opportunities, as 
well as a third created by combining the 
two. First, existing techniques for build-
ing software make extensive use of high-

Overlooked Security 
In the 1970s, processor architects 
focused significant attention on en-
hancing computer security with con-
cepts ranging from protection rings 
to capabilities. It was well under-
stood by these architects that most 
bugs would be in software, but they 
believed architectural support could 
help. These features were largely un-
used by operating systems that were 
deliberately focused on supposedly 
benign environments (such as per-
sonal computers), and the features 
involved significant overhead then, so 
were eliminated. In the software com-
munity, many thought formal verifica-
tion and techniques like microkernels 
would provide effective mechanisms 
for building highly secure software. 
Unfortunately, the scale of our collec-
tive software systems and the drive for 
performance meant such techniques 
could not keep up with processor per-
formance. The result is large software 
systems continue to have many securi-
ty flaws, with the effect amplified due 
to the vast and increasing amount of 
personal information online and the 
use of cloud-based computing, which 
shares physical hardware among po-
tential adversaries. 

Although computer architects and 
others were perhaps slow to realize 
the growing importance of security, 
they began to include hardware sup-
port for virtual machines and encryp-
tion. Unfortunately, speculation in-
troduced an unknown but significant 
security flaw into many processors. In 
particular, the Meltdown and Spectre 
security flaws led to new vulnerabili-
ties that exploit vulnerabilities in the 
microarchitecture, allowing leakage 
of protected information at a high 
rate.14 Both Meltdown and Spectre use 
so-called side-channel attacks where-
by information is leaked by observing 
the time taken for a task and convert-
ing information invisible at the ISA 
level into a timing visible attribute. In 
2018, researchers showed how to ex-
ploit one of the Spectre variants to leak 
information over a network without 
the attacker loading code onto the tar-
get processor.34 Although this attack, 
called NetSpectre, leaks information 
slowly, the fact that it allows any ma-
chine on the same local-area network 
(or within the same cluster in a cloud) 

The end of Dennard 
scaling meant 
architects had to 
find more efficient 
ways to exploit 
parallelism. 
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An interesting research direction 
concerns whether some of the perfor-
mance gap can be closed with new com-
piler technology, possibly assisted by 
architectural enhancements. Although 
the challenges in efficiently translating 
and implementing high-level scripting 
languages like Python are difficult, the 
potential gain is enormous. Achieving 
even 25% of the potential gain could 
result in Python programs running 
tens to hundreds of times faster. This 
simple example illustrates how great 
the gap is between modern languages 
emphasizing programmer productivity 
and traditional approaches emphasiz-
ing performance.

Domain-specific architectures. A 
more hardware-centric approach is to 
design architectures tailored to a spe-
cific problem domain and offer signif-
icant performance (and efficiency) 
gains for that domain, hence, the 
name “domain-specific architectures” 
(DSAs), a class of processors tailored 
for a specific domain—programmable 
and often Turing-complete but tai-
lored to a specific class of applica-
tions. In this sense, they differ from 

application-specific integrated cir-
cuits (ASICs) that are often used for a 
single function with code that rarely 
changes. DSAs are often called acceler-
ators, since they accelerate some of an 
application when compared to execut-
ing the entire application on a general-
purpose CPU. Moreover, DSAs can 
achieve better performance because 
they are more closely tailored to the 
needs of the application; examples of 
DSAs include graphics processing 
units (GPUs), neural network proces-
sors used for deep learning, and pro-
cessors for software-defined networks 
(SDNs). DSAs can achieve higher per-
formance and greater energy efficiency 
for four main reasons: 

First and most important, DSAs 
exploit a more efficient form of par-
allelism for the specific domain. For 
example, single-instruction multiple 
data parallelism (SIMD), is more ef-
ficient than multiple instruction mul-
tiple data (MIMD) because it needs to 
fetch only one instruction stream and 
processing units operate in lockstep.9 
Although SIMD is less flexible than 
MIMD, it is a good match for many 

level languages with dynamic typing and 
storage management. Unfortunately, 
such languages are typically interpreted 
and execute very inefficiently. Leiserson 
et al.24 used a small example—perform-
ing matrix multiply—to illustrate this 
inefficiency. As in Figure 7, simply re-
writing the code in C from Python—a 
typical high-level, dynamically typed lan-
guage—increases performance 47-fold. 
Using parallel loops running on many 
cores yields a factor of approximately 
7. Optimizing the memory layout to ex-
ploit caches yields a factor of 20, and a 
final factor of 9 comes from using the 
hardware extensions for doing single in-
struction multiple data (SIMD) parallel-
ism operations that are able to perform 
16 32-bit operations per instruction. 
All told, the final, highly optimized ver-
sion runs more than 62,000× faster on 
a multicore Intel processor compared 
to the original Python version. This is of 
course a small example, one might ex-
pect programmers to use an optimized 
library for. Although it exaggerates the 
usual performance gap, there are likely 
many programs for which factors of 100 
to 1,000 could be achieved. 

Figure 8. Functional organization of Google Tensor Processing Unit (TPU v1). 
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to the processor efficiently. Examples 
of DSLs include Matlab, a language for 
operating on matrices, TensorFlow, a 
dataflow language used for program-
ming DNNs, P4, a language for pro-
gramming SDNs, and Halide, a lan-
guage for image processing specifying 
high-level transformations. 

The challenge when using DSLs is 
how to retain enough architecture in-
dependence that software written in 
a DSL can be ported to different ar-
chitectures while also achieving high 
efficiency in mapping the software 
to the underlying DSA. For example, 
the XLA system translates Tensorflow 
to heterogeneous processors that 
use Nvidia GPUs or Tensor Processor 
Units (TPUs).40 Balancing portability 
among DSAs along with efficiency is 
an interesting research challenge for 
language designers, compiler creators, 
and DSA architects. 

Example DSA: TPU v1. As an example 
DSA, consider the Google TPU v1, which 
was designed to accelerate neural net 
inference.17,18 The TPU has been in 
production since 2015 and powers ap-
plications ranging from search queries 
to language translation to image recog-
nition to AlphaGo and AlphaZero, the 
DeepMind programs for playing Go and 
Chess. The goal was to improve the per-
formance and energy efficiency of deep 
neural net inference by a factor of 10. 

As shown in Figure 8, the TPU or-
ganization is radically different from a 

DSAs. DSAs may also use VLIW ap-
proaches to ILP rather than specula-
tive out-of-order mechanisms. As men-
tioned earlier, VLIW processors are a 
poor match for general-purpose code15 
but for limited domains can be much 
more efficient, since the control mech-
anisms are simpler. In particular, most 
high-end general-purpose processors 
are out-of-order superscalars that re-
quire complex control logic for both 
instruction initiation and instruction 
completion. In contrast, VLIWs per-
form the necessary analysis and sched-
uling at compile-time, which can work 
well for an explicitly parallel program. 

Second, DSAs can make more effec-
tive use of the memory hierarchy. Mem-
ory accesses have become much more 
costly than arithmetic computations, 
as noted by Horowitz.16 For example, 
accessing a block in a 32-kilobyte cache 
involves an energy cost approximately 
200× higher than a 32-bit integer add. 
This enormous differential makes 
optimizing memory accesses critical 
to achieving high-energy efficiency. 
General-purpose processors run code 
in which memory accesses typically ex-
hibit spatial and temporal locality but 
are otherwise not very predictable at 
compile time. CPUs thus use multilevel 
caches to increase bandwidth and hide 
the latency in relatively slow, off-chip 
DRAMs. These multilevel caches often 
consume approximately half the energy 
of the processor but avoid almost all 
accesses to the off-chip DRAMs that re-
quire approximately 10× the energy of a 
last-level cache access. 

Caches have two notable disadvan-
tages: 

When datasets are very large. Caches 
simply do not work well when datasets 
are very large and also have low tempo-
ral or spatial locality; and 

When caches work well. When 
caches work well, the locality is very 
high, meaning, by definition, most 
of the cache is idle most of the time. 

In applications where the memory-
access patterns are well defined and 
discoverable at compile time, which 
is true of typical DSLs, programmers 
and compilers can optimize the use of 
the memory better than can dynami-
cally allocated caches. DSAs thus usu-
ally use a hierarchy of memories with 
movement controlled explicitly by the 
software, similar to how vector pro-

cessors operate. For suitable applica-
tions, user-controlled memories can 
use much less energy than caches. 

Third, DSAs can use less precision 
when it is adequate. General-purpose 
CPUs usually support 32- and 64-bit in-
teger and floating-point (FP) data. For 
many applications in machine learn-
ing and graphics, this is more accuracy 
than is needed. For example, in deep 
neural networks (DNNs), inference 
regularly uses 4-, 8-, or 16-bit integers, 
improving both data and computation-
al throughput. Likewise, for DNN train-
ing applications, FP is useful, but 32 
bits is enough and 16 bits often works. 

Finally, DSAs benefit from targeting 
programs written in domain-specific 
languages (DSLs) that  expose more 
parallelism, improve the structure and 
representation of memory access, and 
make it easier to map the application ef-
ficiently to a domain-specific processor. 

Domain-Specific Languages 
DSAs require targeting of high-level op-
erations to the architecture, but trying 
to extract such structure and informa-
tion from a general-purpose language 
like Python, Java, C, or Fortran is sim-
ply too difficult. Domain specific lan-
guages (DSLs) enable this process and 
make it possible to program DSAs ef-
ficiently. For example, DSLs can make 
vector, dense matrix, and sparse ma-
trix operations explicit, enabling the 
DSL compiler to map the operations 

Figure 9. Agile hardware development methodology. 
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amine and make complex trade-offs and 
optimizations will be advantaged. 

This opportunity has already led to 
a surge of architecture innovation, at-
tracting many competing architectural 
philosophies: 

GPUs. Nvidia GPUs use many cores, 
each with large register files, many 
hardware threads, and caches;4

TPUs. Google TPUs rely on large 
two-dimensional systolic multipli-
ers and software-controlled on-chip 
memories;17

FPGAs. Microsoft deploys field pro-
grammable gate arrays (FPGAs) in its 
data centers it tailors to neural network 
applications;10 and

CPUs. Intel offers CPUs with many 
cores enhanced by large multi-level 
caches and one-dimensional SIMD in-
structions, the kind of FPGAs used by 
Microsoft, and a new neural network 
processor that is closer to a TPU than 
to a CPU.19 

In addition to these large players, 
dozens of startups are pursuing their 
own proposals.25 To meet growing de-
mand, architects are interconnecting 
hundreds to thousands of such chips to 
form neural-network supercomputers.

This avalanche of DNN architec-
tures makes for interesting times in 
computer architecture. It is difficult to 
predict in 2019 which (or even if any) of 
these many directions will win, but the 
marketplace will surely settle the com-
petition just as it settled the architec-
tural debates of the past. 

Open Architectures
Inspired by the success of open source 
software, the second opportunity in 
computer architecture is open ISAs. 
To create a “Linux for processors” the 
field needs industry-standard open 
ISAs so the community can create 
open source cores, in addition to indi-
vidual companies owning proprietary 
ones. If many organizations design 
processors using the same ISA, the 
greater competition may drive even 
quicker innovation. The goal is to 
provide processors for chips that cost 
from a few cents to $100. 

The first example is RISC-V (called 
“RISC Five”), the fifth RISC architecture 
developed at the University of Califor-
nia, Berkeley.32 RISC-V’s has a commu-
nity that maintains the architecture 
under the stewardship of the RISC-V 

Foundation (http://riscv.org/). Being 
open allows the ISA evolution to occur 
in public, with hardware and software 
experts collaborating before decisions 
are finalized. An added benefit of an 
open foundation is the ISA is unlikely to 
expand primarily for marketing reasons, 
sometimes the only explanation for ex-
tensions of proprietary instruction sets. 

RISC-V is a modular instruction set. 
A small base of instructions run the full 
open source software stack, followed by 
optional standard extensions designers 
can include or omit depending on their 
needs. This base includes 32-bit address 
and 64-bit address versions. RISC-V can 
grow only through optional extensions; 
the software stack still runs fine even if 
architects do not embrace new exten-
sions. Proprietary architectures gener-
ally require upward binary compatibil-
ity, meaning when a processor company 
adds new feature, all future processors 
must also include it. Not so for RISC-V, 
whereby all enhancements are optional 
and can be deleted if not needed by an 
application. Here are the standard ex-
tensions so far, using initials that stand 
for their full names: 

M. Integer multiply/divide; 
A. Atomic memory operations; 
F/D. Single/double-precision float-

ing-point; and 
C. Compressed instructions. 
A third distinguishing feature of 

RISC-V is the simplicity of the ISA. 
While not readily quantifiable, here are 
two comparisons to the ARMv8 archi-
tecture, as developed by the ARM com-
pany contemporaneously: 

Fewer instructions. RISC-V has many 
fewer instructions. There are 50 in 
the base that are surprisingly similar 
in number and nature to the origi-
nal RISC-I.30 The remaining standard 
extensions—M, A, F, and D—add 53 
instructions, plus C added another 34, 
totaling 137. ARMv8 has more than 
500; and 

Fewer instruction formats. RISC-V 
has many fewer instruction formats, 
six, while ARMv8 has at least 14. 

Simplicity reduces the effort to both 
design processors and verify hardware 
correctness. As the RISC-V targets range 
from data-center chips to IoT devices, 
design verification can be a significant 
part of the cost of development. 

Fourth, RISC-V is a clean-slate de-
sign, starting 25 years later, letting its 

general-purpose processor. The main 
computational unit is a matrix unit, 
a systolic array22 structure that pro-
vides 256 × 256 multiply-accumulates 
every clock cycle. The combination of 
8-bit precision, highly efficient sys-
tolic structure, SIMD control, and 
dedication of significant chip area to 
this function means the number of 
multiply-accumulates per clock cycle 
is approximately 100× what a general-
purpose single-core CPU can sustain. 
Rather than caches, the TPU uses a lo-
cal memory of 24 megabytes, approxi-
mately double a 2015 general-purpose 
CPU with the same power dissipa-
tion. Finally, both the activation 
memory and the weight memory (in-
cluding a FIFO structure that holds 
weights) are linked through user-
controlled high-bandwidth memory 
channels. Using a weighted arith-
metic mean based on six common 
inference problems in Google data 
centers, the TPU is 29× faster than a 
general-purpose CPU. Since the TPU 
requires less than half the power, it 
has an energy efficiency for this work-
load that is more than 80× better than a 
general-purpose CPU. 

Summary 
We have considered two different ap-
proaches to improve program perfor-
mance by improving efficiency in the 
use of hardware technology: First, by 
improving the performance of modern 
high-level languages that are typically 
interpreted; and second, by building do-
main-specific architectures that greatly 
improve performance and efficiency 
compared to general-purpose CPUs. 
DSLs are another example of how to im-
prove the hardware/software interface 
that enables architecture innovations 
like DSAs. Achieving significant gains 
through such approaches will require 
a vertically integrated design team that 
understands applications, domain-
specific languages and related compil-
er technology, computer architecture 
and organization, and the underlying 
implementation technology. The need 
to vertically integrate and make design 
decisions across levels of abstraction 
was characteristic of much of the early 
work in computing before the industry 
became horizontally structured. In this 
new era, vertical integration has become 
more important, and teams that can ex-
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tion in waterfall development. Small 
programming teams quickly developed 
working-but-incomplete prototypes and 
got customer feedback before starting 
the next iteration. The scrum version of 
agile development assembles teams of 
five to 10 programmers doing sprints of 
two to four weeks per iteration. 

Once again inspired by a software 
success, the third opportunity is ag-
ile hardware development. The good 
news for architects is that modern 
electronic computer aided design 
(ECAD) tools raise the level of abstrac-
tion, enabling agile development, and 
this higher level of abstraction increas-
es reuse across designs. 

It seems implausible to claim sprints 
of four weeks to apply to hardware, giv-
en the months between when a design 
is “taped out” and a chip is returned. 
Figure 9 outlines how an agile develop-
ment method can work by changing the 
prototype at the appropriate level.23 The 
innermost level is a software simulator, 
the easiest and quickest place to make 
changes if a simulator could satisfy an 
iteration. The next level is FPGAs that 
can run hundreds of times faster than a 
detailed software simulator. FPGAs can 
run operating systems and full bench-
marks like those from the Standard 
Performance Evaluation Corporation 
(SPEC), allowing much more precise 
evaluation of prototypes. Amazon Web 
Services offers FPGAs in the cloud, so 
architects can use FPGAs without need-
ing to first buy hardware and set up a 
lab. To have documented numbers for 
die area and power, the next outer level 
uses the ECAD tools to generate a chip’s 
layout. Even after the tools are run, some 
manual steps are required to refine the 
results before a new processor is ready to 
be manufactured. Processor designers 
call this next level a “tape in.” These first 
four levels all support four-week sprints. 

For research purposes, we could stop 
at tape in, as area, energy, and perfor-
mance estimates are highly accurate. 
However, it would be like running a 
long race and stopping 100 yards be-
fore the finish line because the runner 
can accurately predict the final time. 
Despite all the hard work in race prepa-
ration, the runner would miss the thrill 
and satisfaction of actually crossing the 
finish line. One advantage hardware en-
gineers have over software engineers is 
they build physical things. Getting chips 

architects learn from mistakes of its 
predecessors. Unlike first-generation 
RISC architectures, it avoids microar-
chitecture or technology-dependent 
features (such as delayed branches and 
delayed loads) or innovations (such as 
register windows) that were supersed-
ed by advances in compiler technology. 

Finally, RISC-V supports DSAs by re-
serving a vast opcode space for custom 
accelerators. 

Beyond RISC-V, Nvidia also an-
nounced (in 2017) a free and open ar-
chitecture29 it calls Nvidia Deep Learn-
ing Accelerator (NVDLA), a scalable, 
configurable DSA for machine-learning 
inference. Configuration options in-
clude data type (int8, int16, or fp16 ) 
and the size of the two-dimensional 
multiply matrix. Die size scales from 
0.5 mm2 to 3 mm2 and power from 20 
milliWatts to 300 milliWatts. The ISA, 
software stack, and implementation 
are all open. 

Open simple architectures are syn-
ergistic with security. First, security ex-
perts do not believe in security through 
obscurity, so open implementations 
are attractive, and open implementa-
tions require an open architecture. 
Equally important is increasing the 
number of people and organizations 
who can innovate around secure ar-
chitectures. Proprietary architectures 
limit participation to employees, but 
open architectures allow all the best 
minds in academia and industry to 
help with security. Finally, the simplic-
ity of RISC-V makes its implementa-
tions easier to check. Moreover, the 
open architectures, implementations, 
and software stacks, plus the plasticity 
of FPGAs, mean architects can deploy 
and evaluate novel solutions online 
and iterate them weekly instead of an-
nually. While FPGAs are 10× slower 
than custom chips, such performance 
is still fast enough to support online 
users and thus subject security innova-
tions to real attackers. We expect open 
architectures to become the exemplar 
for hardware/software co-design by ar-
chitects and security experts. 

Agile Hardware Development
The Manifesto for Agile Software Develop-
ment (2001) by Beck et al.1 revolution-
ized software development, overcoming 
the frequent failure of the traditional 
elaborate planning and documenta-

Security experts 
do not believe in 
security through 
obscurity, so open 
implementations 
are attractive, 
and open 
implementations 
require an open 
architecture.
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back to measure, run real programs, 
and show to their friends and family is 
a great joy of hardware design. 

Many researchers assume they must 
stop short because fabricating chips is 
unaffordable. When designs are small, 
they are surprisingly inexpensive. Archi-
tects can order 100 1-mm2 chips for only 
$14,000. In 28 nm, 1 mm2 holds millions 
of transistors, enough area for both a 
RISC-V processor and an NVLDA accel-
erator. The outermost level is expensive 
if the designer aims to build a large chip, 
but an architect can demonstrate many 
novel ideas with small chips. 

Conclusion
“The darkest hour is just before the 
dawn.”  —Thomas Fuller, 1650 

To benefit from the lessons of his-
tory, architects must appreciate that 
software innovations can also inspire 
architects, that raising the abstraction 
level of the hardware/software interface 
yields opportunities for innovation, and 
that the marketplace ultimately settles 
computer architecture debates. The 
iAPX-432 and Itanium illustrate how 
architecture investment can exceed re-
turns, while the S/360, 8086, and ARM 
deliver high annual returns lasting de-
cades with no end in sight. 

The end of Dennard scaling and 
Moore’s Law and the deceleration of per-
formance gains for standard micropro-
cessors are not problems that must be 
solved but facts that, recognized, offer 
breathtaking opportunities. High-level, 
domain-specific languages and archi-
tectures, freeing architects from the 
chains of proprietary instruction sets, 
along with demand from the public for 
improved security, will usher in a new 
golden age for computer architects. 
Aided by open source ecosystems, ag-
ilely developed chips will convincingly 
demonstrate advances and thereby 
accelerate commercial adoption. The 
ISA philosophy of the general-purpose 
processors in these chips will likely be 
RISC, which has stood the test of time. 
Expect the same rapid improvement as 
in the last golden age, but this time in 
terms of cost, energy, and security, as 
well as in performance. 

The next decade will see a Cambri-
an explosion of novel computer archi-
tectures, meaning exciting times for 
computer architects in academia and 
in industry.  

To watch Hennessy and 
Patterson’s full Turing Lecture, see 
https://www.acm.org/hennessy-
patterson-turing-lecture


