
Efficient Shader Tricks
That Will Impress Your Friends!

Chris Oat
3D Application Research Group
ATI Research, Inc.

Game Developer's Conference 2006: San Jose, CA 2

Outline

• Multi-Layered Materials - 30 minutes
• Depth parallax
• Light diffusion

• Ambient Aperture Lighting – 30 minutes
• Visibility aperture
• Area light sources
• Hard & Soft shadows

Game Developer's Conference 2006: San Jose, CA 3

Multi-Layered Materials

Part 1 of 2:
Multi-Layered Materials

Game Developer's Conference 2006: San Jose, CA 4

Introduction

• Rendering semi-transparent, multi-layered materials
• Surface with multiple texture layers
• Texture layers are blended in some way

• Old way: Multi-texture blending
• Lerping two textures looks flat
• Layers are squashed together

• New way: Combination of techniques
• Normal mapping
• Transparency masking
• Parallax offset mapping
• Image filtering

Game Developer's Conference 2006: San Jose, CA 5

Motivation

• Many real world surfaces have volumetric material
properties:

• Examples: Biological tissues, cloudy atmosphere,
aliens, etc…

• These materials get their unique appearance from:
• Multiple, semi-transparent “layers”

• Each layer has some opacity value

• Complex light interactions:
• Light diffusion: blurry subsurface layers

• Perspective:
• Sub-layers have depth

• Traditionally you might use a volume renderer to
achieve this look

• Ray tracing isn’t practical for us
• Choose the most important visual components and

approximate them!

Game Developer's Conference 2006: San Jose, CA 6

What are we trying to approximate?

• Volumetric material
• Volume approximated with multiple discreet layers
• Layers are semi-transparent
• Layers reflect, absorb, and transmit light

• Visually important properties:
• Inter-layer occlusion

• Layers store opacity in alpha
• Depth parallax

• Parallax due to layer depth or thickness
• Light diffusion

• Light scatters between layers

• How can we achieve the look and still be fast?
• Alpha blend/composite
• Parallax offsetting
• Blurring

Game Developer's Conference 2006: San Jose, CA 7

Two layer example: Human Heart

• Each layer stored as a texture map
• Opaque texels occlude the texels below them

• LERP layers based on alpha
• This gets layer occlusion working
• But results in flat looking composite

• In order to give the impression of layer depth, a form of parallax
mapping is needed!

• Texture Coordinates for inner layer are computed in the shader
• Based on viewing angle and layer depth

Outer Layer: Normal, Base, Opacity maps

Inner Layer: Base map

Game Developer's Conference 2006: San Jose, CA 8

Multi-layer depth parallax

• Make the material look volumetric
• Depth parallax

• Shift in apparent position due to change in view
• Inner layer shifts with respect to outer layer
• Shift is more pronounced as depth increases

• Can’t use surface layer’s UV coordinate to sample inner layer’s texture

Ey
e

Game Developer's Conference 2006: San Jose, CA 9

Multi-layer depth parallax

Ey
e

• Make the material look volumetric
• Depth parallax

• Shift in apparent position due to change in view
• Inner layer shifts with respect to outer layer
• Shift is more pronounced as depth increases

• Can’t use surface layer’s UV coordinate to sample inner layer’s texture

Game Developer's Conference 2006: San Jose, CA 10

Multi-layer depth parallax

Ey
e

• Make the material look volumetric
• Depth parallax

• Shift in apparent position due to change in view
• Inner layer shifts with respect to outer layer
• Shift is more pronounced as depth increases

• Can’t use surface layer’s UV coordinate to sample inner layer’s texture

Game Developer's Conference 2006: San Jose, CA 11

Inner layer’s texture coordinates

• Layers are assumed to be parallel in tangent space
• Layer depth d is homogeneous for a given layer

• Find inner layer’s texture coordinate
1. Find view vector = V
2. Reflect V about Normal (from normal map) = R
3. Reflect R about surface plane = transmission vector T

• In tangent space, we simply negate R.z component

4. Find distance s along T to inner layer: Function of distance d between layers
5. Use T and s this to find inner layer’s texture coodinate

= Outer UV coordinate: <u,v>
= Inner UV coordinate: <u’,v’>

V

d

N
R

s
T

〉〈+〉〈=〉〈

=

〉−〈=

−−−=

yx

z

zyx

TTsvuvu

Tds

RRRT
NNVdotVR

vv

v

vvvv

vvvvv

,,','

/

,,
*),(*2

Game Developer's Conference 2006: San Jose, CA 12

Parallax offset

// Compute inner layer’s texture coordinate and transmission depth
// vTexCoord: Outer layer’s texture coordinate
// vViewTS: View vector in tangent space
// vNormalTS: Normal in tangent space (sampled normal map)
// fLayerThickness: Distance from outer layer to inner layer
float3 ParallaxOffsetAndDepth (float2 vTexCoord, float3 vViewTS,

float3 vNormalTS, float fLayerThickness)
{

// Tangent space reflection vector
float3 vReflectionTS = reflect(-vViewTS, vNormalTS);

// Tangent space transmission vector (reflect about surface plane)
float3 vTransTS = float3(vReflectionTS.xy, -vReflectionTS.z);

// Distance along transmission vector to intersect inner layer
float fTransDist = fLayerThickness / abs(vTransTS.z);

// Texel size: Hard coded for 1024x1024 texture size
float2 vTexelSize = float2(1.0/1024.0, 1.0/1024.0);

// Inner layer’s texture coordinate due to parallax
float2 vOffset = vTexelSize * fTransDist * vTransTS.xy;
float2 vOffsetTexCoord = vTexCoord + vOffset;

// Return offset texture coordinate in xy and transmission dist in z
return float3(vOffsetTexCoord, fTransDist);

}

Game Developer's Conference 2006: San Jose, CA 13

Parallax creates the illusion of depth

• The offset texture coordinate is used for sampling from the inner
layer’s texture

• This creates the illusion of depth or volume even though the
surface geometry is flat

• We still need a way to light the inner layer convincingly…

Ey
e

Game Developer's Conference 2006: San Jose, CA 14

Multi-layer light diffusion

• Light scatters as it enters a material
1. Light reaches surface
2. Some reflects back to eye
3. Some scatters further into the material
4. GOTO 2

• Physically based models for scattering are slow
• Get the look without doing the math!

• Light reflected back to eye from surface
• Light scatters on its way in
• Light scatters on its way out

Ey
e

Game Developer's Conference 2006: San Jose, CA 15

Getting the look: Incoming light

• Surface layer lit as usual (N.L)
• Accounts for light that doesn’t enter material

• Inner layer is more evenly lit
• Transmitted light scatters onto layer from many directions

• Texture space lighting
• Render diffuse lighting into an off-screen texture using texture

coordinates as positions
• Acts like a dynamic light map for the outer layer

Game Developer's Conference 2006: San Jose, CA 16

Getting the look: Incoming light

• Texture space lighting
• Render diffuse lighting into an off-screen texture
• Light as a 3D model but draw into texture
• Vertex shader outputs texture coordinates as projected “positions”

then the rasterizer does the unwrap
• Vertex shader computes light vectors based on 3D position and

interpolates
• This is a light map for the outer layer
• HLSL implementation online: Dave Gosselin’s Skin Rendering Slides

• www.ati.com/developer/gdc/D3DTutorial_Skin_Rendering.pdf

Game Developer's Conference 2006: San Jose, CA 17

Getting the look: Incoming light

•For the inner layer’s lighting, use a blurred version of the
outer layer’s light map

•This gives us smooth, diffused lighting on the inner layer
•The amount of blurring depends on the thickness of the
outer layer

• Use a variable sized blur kernel

Outer layer’s light maps

Inner layer

Game Developer's Conference 2006: San Jose, CA 18

Poisson disc kernel

• A Poisson disc kernel is ideal since it can be resized dynamically
based on the amount of light diffusion you want

• Kernel takes a fixed number of taps from source texture
• Taps are distributed randomly on a unit disc (Poisson distribution)
• Disc size can be scaled on a per-pixel basis for more or less

blurring
• Our disc’s radius is based on layer thickness

• Thicker layer results in more blurring

Small Blur Area Large Blur Area

Game Developer's Conference 2006: San Jose, CA 19

Growable Poisson disc

// Growable Poisson disc (13 samples)
// tSource: Source texture sampler
// vTexCoord: Texture space location of disc’s center
// fRadius: Radius if kernel (in texel units)
float3 PoissonFilter (sampler tSource, float2 vTexCoord, float fRadius)
{

// Hard coded texel size: Assumes 1024x1024 source texture
float2 vTexelSize = float2(1.0/1024.0, 1.0/1024.0);

// Tap locations for unit disc
float2 vTaps[12] = {float2(-0.326212,-0.40581),float2(-0.840144,-0.07358),

float2(-0.695914,0.457137),float2(-0.203345,0.620716),
float2(0.96234,-0.194983),float2(0.473434,-0.480026),
float2(0.519456,0.767022),float2(0.185461,-0.893124),
float2(0.507431,0.064425),float2(0.89642,0.412458),
float2(-0.32194,-0.932615),float2(-0.791559,-0.59771)};

// Take a sample at the disc’s center
float3 cSampleAccum = tex2D(tSource, vTexCoord);

// Take 12 samples in disc
for (int nTapIndex = 0; nTapIndex < 12; nTapIndex++)
{

// Compute new texture coord inside disc
float2 vTapCoord = vTexCoord + vTexelSize * vTaps[nTapIndex] * fRadius;

// Accumulate samples
cSampleAccum += tex2D(tSource, vTapCoord);

}

return cSampleAccum / 13.0; // Return average
}

Game Developer's Conference 2006: San Jose, CA 20

Getting the look: Outgoing lighting

• The blurred light map approximates light scattering as it enters the
material

• Light also scatter as on it’s way back out of the material
• This has the effect of a the Inner layer’s base map appearing blurry
• Use Growable Poisson Disc filter for sampling inner layer’s base map

• This time kernel size depends on transmission distance through material
• Not just layer thickness
• Kernel is centered around the inner layer’s parallax offset texture

coordinate
• Inner layer now looks blurry

• The more material you’re looking through, the blurrier it will look

Ey
e

Ey
e

Game Developer's Conference 2006: San Jose, CA 21

Putting it all together

// Sample from outer layer’s base map and light map textures
float3 cOuterDiffuse = tex2D(tLightMap, i.vTexCoord);
float4 cOuterBase = tex2D(tOuterBaseMap, i.vTexCoord); // Opacity in alpha channel

// Compute parallax offset texture coordinate for sampling from inner layer textures
// returns UV coord in X and Y and transmission distance in Z
float3 vOffsetAndDepth = ParallaxOffsetAndDepth(i.vTexCoord, vViewTS,

vNormalTS, fLayerThicknes);

// Poisson disc filtering: blurry light map (blur size based on layer thickness)
float3 cInnerDiffuse = PoissonFilter(tLightMap, vOffsetAndDepth.xy, fLayerThickness);

// Poisson disc filtering: blurry base map (blur size based on transmission distance)
float3 cInnerBase = PoissonFilter(tInnerBaseMap, vOffsetAndDepth.xy, vOffsetAndDepth.z);

// Compute N.V for additional compositing factor (prefer outer layer at grazing angles)
float fNdotV = saturate(dot(vNormalTS, vViewTS));

// Lerp based on opacity and N.V (N.V prevents artifacts when view is very edge on)
float3 cOut = lerp(cOuterBase.rgb*cOuterDiffuse.rgb,

cInnerBase.rgb*cInnerDiffuse.rgb,
cOuterBase.a * fNdotV);

Game Developer's Conference 2006: San Jose, CA 22

Demo: Beating human heart

Game Developer's Conference 2006: San Jose, CA 23

Taking it to the next level

• Increase complexity
• More than two layers
• Use the same techniques I’ve shown here
• This is more expensive, but looks really good!

• Improve quality
• Inter-layer shadowing
• Scale light map samples by their corresponding opacities from base map
• Keeps light from passing through opaque regions
• In practice this doesn’t make a huge difference, as you can’t see what’s below an

opaque region unless you’re looking at it very edge on on
• More important when you’re using many layers or a very deep/thick material

• Improve performance
• Eliminate the off screen render targets
• Two suggestions for eliminating renderable texture (light map)
• See next slide…

Game Developer's Conference 2006: San Jose, CA 24

Lighting optimization 1

• Outer layer lit as usual
• Use a normal map for high frequency surface detail

• Instead of using a blurred light map for the Inner layer’s lighting
• Use a modified Poisson Disc filter kernel
• Take multiple samples from outer layer’s Normal Map

• Compute N.L for each sample
• Average all the N.L computations

• Eliminates the need for a renderable texture!

Game Developer's Conference 2006: San Jose, CA 25

Lighting optimization 2

• Outer layer lit as usual
• Use a normal map for high frequency surface detail

• Instead of using a blurred light map or multiple normal map samples for
the Inner layer’s lighting:

• Use the geometric normal for computing N.L
• Smoother, lower frequency lighting
• In practice, this works quite well and it’s a lot faster

• Eliminates the need for a renderable texture!
• Reduces texture bandwidth requirements by eliminating one of the Poisson

disc filtering steps

N.L

N.L

Game Developer's Conference 2006: San Jose, CA 26

Ambient Aperture Lighting

Part 2 of 2:
Ambient Aperture Lighting

Game Developer's Conference 2006: San Jose, CA 27

What is Ambient Aperture lighting?

• Shading model that uses apertures to approximate a visibility function
• Precomputed visibility
• Dynamic spherical area light sources
• Dynamic point light sources
• Hard & Soft shadows

• Similar to horizon mapping, but allows for area light sources
• The “ambient” comes from the fact that we use a modified ambient

occlusion calculation to find an aperture of average visibility
• Developed with Terrain rendering in mind but can be used for other

things as well…

Game Developer's Conference 2006: San Jose, CA 28

What are the applications?

• Non-deformable models
• Terrains
• Static scene elements

• Buildings
• Statues

• Dynamic spherical area light sources
• Hard & Soft shadows

• Applications where performance is critical and rendering must still
look realistic (but not necessarily physically correct)

Game Developer's Conference 2006: San Jose, CA 29

How does it work?

• Ambient aperture lighting works in 2 stages
• Precomputation Stage

• Visibility function is computed at every point on mesh
• Per-vertex or per-pixel

• Visibility function is stored using a spherical cap
• Spherical cap stores an average, contiguous region of visibility

• A spherical cap is a portion of a sphere cut off by a plane (a hemisphere itself is a
spherical cap)

• Rendering Stage
• Spherical cap acts as an aperture
• Aperture is used to restrict incoming light so that it only enters the from visible

(un-occluded) directions
• Area light sources are projected onto the hemisphere and are clipped against the

aperture
• This determines how much of their light passes through the aperture

Game Developer's Conference 2006: San Jose, CA 30

Precomputation stage

• The precomputation stage can be thought of as a two step
process:

• Step 1:
• Find visible area

• Area of hemisphere that is unoccluded by the surrounding scene

• This serves as the area of our aperture/spherical cap

• Step 2:
• Find average direction of visibility

• Just like finding a bent normal
• Average of all un-occluded rays fired from a given point

• This serves as the orientation of our aperture/spherical cap

Game Developer's Conference 2006: San Jose, CA 31

Visible area (aperture size)

• For every point on the mesh (vertex/pixel):
• Cast a bunch of rays
• Determine what percentage of rays reach infinity (un-occluded)

• Gives you a percentage of visibility
• Like finding ambient occlusion but you don’t weight samples by cos(theta)

• Multiply by 2PI (area of unit hemisphere)
• Gives you an average area of visibility

• The average area of visibility is used as our aperture size.
• We are making the assumption that the visible area on the hemisphere

forms a contiguous circular region (i.e. a spherical cap)
• We’ll need the arc length of the cap’s radius at render time:

• arc length of radius = acos(-area/2PI + 1)
• Single float value, stored per vertex/pixel

Game Developer's Conference 2006: San Jose, CA 32

Visible direction (aperture orientation)

• For every point on the mesh (vertex/pixel):
• Cast a bunch of rays
• Determine average direction for which rays reach infinity (un-occluded)

• This is frequently referred to as a bent normal

• This gives you the average direction of visibility
• Use this for your aperture’s orientation
• A float3 per vertex/pixel

Game Developer's Conference 2006: San Jose, CA 33

How to render using apertures?

• Project spherical area light source onto hemisphere
• Projected area light source covers some area of the hemisphere

• Projected sphere forms a spherical cap, just like our aperture

• Find the intersection of the projected light’s spherical cap and the
aperture’s spherical cap

• Once the area of intersection is found, we know the portion of the
light source that passes through the aperture

Game Developer's Conference 2006: San Jose, CA 34

Finding area of intersection

• Intersection area of two spherical caps is a function of the arc lengths of
their radii (r0, r1) and the distance between their centroids (d)

• If d >= r0 +r1
• No intersection
• Thus area is 0

• If min(r0,r1) <= max(r0,r1)-d
• Fully intersected
• Use the area of the smallest cap
• Area of cap:

• Otherwise…

Game Developer's Conference 2006: San Jose, CA 35

Spherical cap intersection

• Oh no!
• After all our simplifications, we’re left with this monster to solve!
• Let’s take a closer look at the intersection area function…

*Simplified form of intersection area function given by [Tovchigrechko]

Game Developer's Conference 2006: San Jose, CA 36

Intersection function

• Case 1 and 3 handled by our early outs
• Case 1 : Full intersection
• Case 3 : No intersection

• Intersection area decreases as caps move away from each other
• Rate of falloff is inversely proportional to the area of the two spherical caps

• Bigger caps have slower falloff
• Smaller caps have faster falloff

0.05

0.2
0

0 0.4

0.1

d

10.80.6

0.2

0.15

Case: 1 Case: 2 Case: 3

Game Developer's Conference 2006: San Jose, CA 37

Smoothstep saves the day

• Case 1: Full intersection
• Smoothstep returns 1

• Case 2: Partial intersection
• Smoothstep returns smooth falloff (depending on amount of overlap)
• Gives a smooth transition from full intersection to no intersection

• Case 3: No intersection
• Smoothstep returns 0

Area of smallest spherical cap

Game Developer's Conference 2006: San Jose, CA 38

Intersection area approximation

// Approximate the are of intersection of two spherical caps
// fRadius0 : First cap’s radius (arc length in radians)
// fRadius1 : Second caps’ radius (in radians)
// fDist : Distance between caps (radians between centers of caps)
float SphericalCapIntersectionAreaFast (float fRadius0, float fRadius1, float fDist)
{

float fArea;

if (fDist <= max(fRadius0, fRadius1) - min(fRadius0, fRadius1))
{

// One cap in completely inside the other
fArea = 6.283185308 - 6.283185308 * cos(min(fRadius0,fRadius1));

}
else if (fDist >= fRadius0 + fRadius1)
{

// No intersection exists
fArea = 0;

}
else
{

float fDiff = abs(fRadius0 - fRadius1);
fArea = smoothstep(0.0,

1.0,
1.0-saturate((fDist-fDiff)/(fRadius0+fRadius1-fDiff)));

fArea *= 6.283185308 - 6.283185308 * cos(min(fRadius0,fRadius1));
}
return fArea;

}

Game Developer's Conference 2006: San Jose, CA 39

Don’t forget about our friend Lambert

• Reflectance is determined by the area of intersection and Lambert’s Cosine
Law

• Find a vector to the centroid for the region of intersection
• This is estimated by averaging the aperture’s vector and the light’s vector
• Scale the intersection area by N.Vcentroid

• IntersectionArea * saturate(N.Vcentroid)

• This provides a Lambertian falloff as the light source approaches the horizon

• Just another approximation on top of all the others we’re making ☺
• Assumes the area above intersection’s centroid is about the same as the

area below the intersection’s centroid
• Negative error above the centroid cancels the positive error below the

centroid

Game Developer's Conference 2006: San Jose, CA 40

Ambient light

• We now have a function for finding direct lighting from area light
sources, but we’d like to incorporate some form of ambient light to
account for light scattered in from the sky

• Treat sky as if it were a giant area light behind the sun:
• Compute area light/aperture intersection
• If area of intersection is less that area of aperture, fill the missing

space with indirect “ambient light”
• For a terrain, use the average sky color (lowest MIP level of sky dome?)

• Blue during the day
• Redish-pink at sun set
• Black at night

• Works better than the standard constant ambient term
• Only applies to areas that aren’t being lit directly and aren’t totally

occluded from the outside world

Game Developer's Conference 2006: San Jose, CA 41

Demo: Terrain

Game Developer's Conference 2006: San Jose, CA 42

What are the benefits of this technique?

• Area light sources
• Better than N.L with point light sources
• Hard shadows for small area light sources
• Soft shadows for large area lights sources

• Small storage requirements
• Just 4 floats per-vertex or per-pixel
• Or 3 floats if you store aperture orientation in tangent space and

derive z component in your shader

• Doesn’t require additional transforms
• Shadow maps require transforming model one or more extra times

• Very cheap to compute
• Just a handful of vertex shader or pixel shader instructions
• Gives pleasing results

Game Developer's Conference 2006: San Jose, CA 43

What are the potential downfalls?

• Assumes visible region is contiguous and circular
• Sphere over plane (see example)
• Which way should visibility aperture point?
• Visible region is a band around the horizon, this is poorly approximated by a spherical cap

• Multiple light sources don’t occlude each other
• You’d have to compute area of overlap to make sure you don’t over light
• In practice this isn’t necessarily a huge issue (people expect 2 light sources to make things twice as bright)

• Assumes non-local light sources
• Light source can’t be between point being shaded and it’s blocker
• Results in incorrect shadowing

• Works well with terrains
• Terrains typically have nicely behaving visibility functions
• Occlusion is a band along the horizon
• Visibility region is generally a contiguous, circular region somewhere in the sky

Game Developer's Conference 2006: San Jose, CA 44

Taking it to the next level

• Multiple visibility apertures
• Fixes case where you’re in a room with multiple windows
• Multiple contiguous regions of visibility

• Occlusion “anti-apertures”
• Contiguous regions of occlusion
• Fixes sphere over plane case
• Spherical cap intersection gives amount of occlusion rather than amount of light

Game Developer's Conference 2006: San Jose, CA 45

Preprocessor optimizations

• Speed up or even eliminate the preprocessing step
• Exploit the fact that Aperture can be computed using modified ambient

occlusion and bent normal preprocessors

• Google for:

• GPU accelerated ambient occlusion
• Improve preprocessing speed
• D3DX provides a GPU accelerated SH direct lighting function

• First coefficient can be used to approximate visible area
• Next 3 coefficients approximate average visible direction

• Dynamic ambient occlusion
• Eliminate the need to preprocess
• Allows for deformable meshes
• Probably isn’t realistic for your performance needs

Game Developer's Conference 2006: San Jose, CA 46

Conclusion

• Two techniques that use various mathematical approximations
and make simplifying assumptions to enable us to render
expensive looking graphics

• Multi-Layered Materials
• Depth parallax
• Light diffusion

• Ambient Aperture Lighting
• Area light sources
• Hard & Soft shadows

Game Developer's Conference 2006: San Jose, CA 47

Thank you!

I would like to thank Pedro Sander for his thoughtful
discussion and collaboration on the Ambient Aperture
work.

Thanks to Eli Turner for providing the human heart
model and textures.

Game Developer's Conference 2006: San Jose, CA 48

References

• Kaneko, T. et al., “Detailed Shape Representation with Parallax
Mapping,” ICAT, 2001.

• Max, N. L. Horizon Mapping: Shadows for Bump-mapped Surfaces.
The Visual Computer 4, 2 (July 1988), 109-117.

• Oat, Chris, “Rendering Semitransparent Layered Media,” ShaderX
3: Advanced Rendering with DirectX and OpenGL, Charles River
Media, 2005.

• Pharr, Matt, “Layered Media for Subsurface Shaders,” Advanced
Renderman, SIGGRAPH 2002 Course Notes.

• Tovchigrechko, A. and Vakser, I.A. 2001. How common is the
funnel-like energy landscape in protein-protein interactions?
Protein Sci. 10:1572-1583.

• Welsh, Terry, “Parallax Mapping with Offset Limiting: A Per-Pixel
Approximation of Uneven Surfaces,” Infiniscape Tech Report, 2003.

Game Developer's Conference 2006: San Jose, CA 49

Questions?

Chris Oat
coat@ati.com

These slides are available for download:
www.ati.com/developer

Game Developer's Conference 2006: San Jose, CA 50

We’re hiring!

3D Applications Research Group
Demo Team

Research Team
Tools team

Visit our web site:
http://www.ati.com/companyinfo/careers/

Mention 3DARG and the team you’re interested
in joining!

