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Outline

• Multi-Layered Materials - 30 minutes
• Depth parallax
• Light diffusion

• Ambient Aperture Lighting – 30 minutes
• Visibility aperture
• Area light sources
• Hard & Soft shadows
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Multi-Layered Materials

Part 1 of 2:
Multi-Layered Materials
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Introduction

• Rendering semi-transparent, multi-layered materials
• Surface with multiple texture layers
• Texture layers are blended in some way

• Old way: Multi-texture blending
• Lerping two textures looks flat 
• Layers are squashed together

• New way: Combination of techniques
• Normal mapping
• Transparency masking
• Parallax offset mapping
• Image filtering
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Motivation

• Many real world surfaces have volumetric material 
properties:

• Examples: Biological tissues, cloudy atmosphere, 
aliens, etc…

• These materials get their unique appearance from:
• Multiple, semi-transparent “layers”

• Each layer has some opacity value

• Complex light interactions:
• Light diffusion: blurry subsurface layers

• Perspective: 
• Sub-layers have depth

• Traditionally you might use a volume renderer to 
achieve this look

• Ray tracing isn’t practical for us
• Choose the most important visual components and 

approximate them!
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What are we trying to approximate?

• Volumetric material
• Volume approximated with multiple discreet layers
• Layers are semi-transparent
• Layers reflect, absorb, and transmit light

• Visually important properties:
• Inter-layer occlusion

• Layers store opacity in alpha
• Depth parallax

• Parallax due to layer depth or thickness
• Light diffusion

• Light scatters between layers

• How can we achieve the look and still be fast?
• Alpha blend/composite
• Parallax offsetting
• Blurring
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Two layer example: Human Heart

• Each layer stored as a texture map
• Opaque texels occlude the texels below them

• LERP layers based on alpha
• This gets layer occlusion working
• But results in flat looking composite

• In order to give the impression of layer depth, a form of parallax 
mapping is needed!

• Texture Coordinates for inner layer are computed in the shader
• Based on viewing angle and layer depth

Outer Layer: Normal, Base, Opacity maps

Inner Layer: Base map
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Multi-layer depth parallax

• Make the material look volumetric
• Depth parallax

• Shift in apparent position due to change in view
• Inner layer shifts with respect to outer layer
• Shift is more pronounced as depth increases

• Can’t use surface layer’s UV coordinate to sample inner layer’s texture

Ey
e
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Multi-layer depth parallax

Ey
e

• Make the material look volumetric
• Depth parallax

• Shift in apparent position due to change in view
• Inner layer shifts with respect to outer layer
• Shift is more pronounced as depth increases

• Can’t use surface layer’s UV coordinate to sample inner layer’s texture
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Multi-layer depth parallax

Ey
e

• Make the material look volumetric
• Depth parallax

• Shift in apparent position due to change in view
• Inner layer shifts with respect to outer layer
• Shift is more pronounced as depth increases

• Can’t use surface layer’s UV coordinate to sample inner layer’s texture
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Inner layer’s texture coordinates

• Layers are assumed to be parallel in tangent space
• Layer depth d is homogeneous for a given layer

• Find inner layer’s texture coordinate
1. Find view vector = V
2. Reflect V about Normal (from normal map) = R
3. Reflect R about surface plane = transmission vector T

• In tangent space, we simply negate R.z component

4. Find distance s along T to inner layer: Function of distance d between layers
5. Use T and s this to find inner layer’s texture coodinate

= Outer UV coordinate: <u,v>
= Inner UV coordinate: <u’,v’>
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Parallax offset

// Compute inner layer’s texture coordinate and transmission depth
// vTexCoord: Outer layer’s texture coordinate
// vViewTS: View vector in tangent space
// vNormalTS: Normal in tangent space (sampled normal map)
// fLayerThickness: Distance from outer layer to inner layer
float3 ParallaxOffsetAndDepth ( float2 vTexCoord, float3 vViewTS, 

float3 vNormalTS, float fLayerThickness )
{

// Tangent space reflection vector
float3 vReflectionTS = reflect( -vViewTS, vNormalTS );

// Tangent space transmission vector (reflect about surface plane)
float3 vTransTS = float3( vReflectionTS.xy, -vReflectionTS.z );

// Distance along transmission vector to intersect inner layer
float fTransDist = fLayerThickness / abs(vTransTS.z);

// Texel size: Hard coded for 1024x1024 texture size
float2 vTexelSize = float2( 1.0/1024.0, 1.0/1024.0 );

// Inner layer’s texture coordinate due to parallax
float2 vOffset = vTexelSize * fTransDist * vTransTS.xy;
float2 vOffsetTexCoord = vTexCoord + vOffset;

// Return offset texture coordinate in xy and transmission dist in z
return float3( vOffsetTexCoord, fTransDist );

}
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Parallax creates the illusion of depth

• The offset texture coordinate is used for sampling from the inner 
layer’s texture

• This creates the illusion of depth or volume even though the 
surface geometry is flat

• We still need a way to light the inner layer convincingly…

Ey
e
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Multi-layer light diffusion

• Light scatters as it enters a material
1. Light reaches surface
2. Some reflects back to eye
3. Some scatters further into the material
4. GOTO 2

• Physically based models for scattering are slow
• Get the look without doing the math!

• Light reflected back to eye from surface
• Light scatters on its way in
• Light scatters on its way out

Ey
e
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Getting the look: Incoming light 

• Surface layer lit as usual (N.L)
• Accounts for light that doesn’t enter material

• Inner layer is more evenly lit
• Transmitted light scatters onto layer from many directions

• Texture space lighting
• Render diffuse lighting into an off-screen texture using texture 

coordinates as positions
• Acts like a dynamic light map for the outer layer
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Getting the look: Incoming light

• Texture space lighting
• Render diffuse lighting into an off-screen texture
• Light as a 3D model but draw into texture
• Vertex shader outputs texture coordinates as projected “positions”

then the rasterizer does the unwrap
• Vertex shader computes light vectors based on 3D position and 

interpolates
• This is a light map for the outer layer
• HLSL implementation online: Dave Gosselin’s Skin Rendering Slides

• www.ati.com/developer/gdc/D3DTutorial_Skin_Rendering.pdf
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Getting the look: Incoming light

•For the inner layer’s lighting, use a blurred version of the 
outer layer’s light map

•This gives us smooth, diffused lighting on the inner layer
•The amount of blurring depends on the thickness of the 
outer layer

• Use a variable sized blur kernel

Outer layer’s light maps

Inner layer
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Poisson disc kernel

• A Poisson disc kernel is ideal since it can be resized dynamically 
based on the amount of light diffusion you want

• Kernel takes a fixed number of taps from source texture
• Taps are distributed randomly on a unit disc (Poisson distribution)
• Disc size can be scaled on a per-pixel basis for more or less 

blurring
• Our disc’s radius is based on layer thickness

• Thicker layer results in more blurring

Small Blur Area Large Blur Area
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Growable Poisson disc

// Growable Poisson disc (13 samples)
// tSource: Source texture sampler
// vTexCoord: Texture space location of disc’s center
// fRadius: Radius if kernel (in texel units)
float3 PoissonFilter ( sampler tSource, float2 vTexCoord, float fRadius )
{

// Hard coded texel size: Assumes 1024x1024 source texture
float2 vTexelSize = float2( 1.0/1024.0, 1.0/1024.0 );

// Tap locations for unit disc
float2 vTaps[12] = {float2(-0.326212,-0.40581),float2(-0.840144,-0.07358),

float2(-0.695914,0.457137),float2(-0.203345,0.620716),
float2(0.96234,-0.194983),float2(0.473434,-0.480026),
float2(0.519456,0.767022),float2(0.185461,-0.893124),
float2(0.507431,0.064425),float2(0.89642,0.412458),
float2(-0.32194,-0.932615),float2(-0.791559,-0.59771)};

// Take a sample at the disc’s center
float3 cSampleAccum = tex2D( tSource, vTexCoord );

// Take 12 samples in disc
for ( int nTapIndex = 0; nTapIndex < 12; nTapIndex++ )
{

// Compute new texture coord inside disc
float2 vTapCoord = vTexCoord + vTexelSize * vTaps[nTapIndex] * fRadius;

// Accumulate samples
cSampleAccum += tex2D( tSource, vTapCoord );

}

return cSampleAccum / 13.0; // Return average
}
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Getting the look: Outgoing lighting

• The blurred light map approximates light scattering as it enters the 
material

• Light also scatter as on it’s way back out of the material
• This has the effect of a the Inner layer’s base map appearing blurry
• Use Growable Poisson Disc filter for sampling inner layer’s base map

• This time kernel size depends on transmission distance through material
• Not just layer thickness
• Kernel is centered around the inner layer’s parallax offset texture 

coordinate
• Inner layer now looks blurry

• The more material you’re looking through, the blurrier it will look

Ey
e

Ey
e
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Putting it all together

// Sample from outer layer’s base map and light map textures
float3 cOuterDiffuse = tex2D(tLightMap, i.vTexCoord);
float4 cOuterBase = tex2D(tOuterBaseMap, i.vTexCoord); // Opacity in alpha channel

// Compute parallax offset texture coordinate for sampling from inner layer textures
// returns UV coord in X and Y and transmission distance in Z
float3 vOffsetAndDepth = ParallaxOffsetAndDepth(i.vTexCoord, vViewTS, 

vNormalTS, fLayerThicknes);

// Poisson disc filtering: blurry light map (blur size based on layer thickness)
float3 cInnerDiffuse = PoissonFilter(tLightMap, vOffsetAndDepth.xy, fLayerThickness);

// Poisson disc filtering: blurry base map (blur size based on transmission distance)
float3 cInnerBase = PoissonFilter(tInnerBaseMap, vOffsetAndDepth.xy, vOffsetAndDepth.z);

// Compute N.V for additional compositing factor (prefer outer layer at grazing angles)
float fNdotV = saturate( dot(vNormalTS, vViewTS) );

// Lerp based on opacity and N.V (N.V prevents artifacts when view is very edge on)
float3 cOut = lerp(cOuterBase.rgb*cOuterDiffuse.rgb, 

cInnerBase.rgb*cInnerDiffuse.rgb, 
cOuterBase.a * fNdotV);
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Demo: Beating human heart
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Taking it to the next level

• Increase complexity
• More than two layers
• Use the same techniques I’ve shown here
• This is more expensive, but looks really good!

• Improve quality
• Inter-layer shadowing
• Scale light map samples by their corresponding opacities from base map
• Keeps light from passing through opaque regions
• In practice this doesn’t make a huge difference, as you can’t see what’s below an 

opaque region unless you’re looking at it very edge on on
• More important when you’re using many layers or a very deep/thick material

• Improve performance
• Eliminate the off screen render targets
• Two suggestions for eliminating renderable texture (light map) 
• See next slide…
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Lighting optimization 1

• Outer layer lit as usual
• Use a normal map for high frequency surface detail

• Instead of using a blurred light map for the Inner layer’s lighting
• Use a modified Poisson Disc filter kernel
• Take multiple samples from outer layer’s Normal Map

• Compute N.L for each sample
• Average all the N.L computations

• Eliminates the need for a renderable texture!
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Lighting optimization 2

• Outer layer lit as usual
• Use a normal map for high frequency surface detail

• Instead of using a blurred light map or multiple normal map samples for 
the Inner layer’s lighting:

• Use the geometric normal for computing N.L
• Smoother, lower frequency lighting
• In practice, this works quite well and it’s a lot faster

• Eliminates the need for a renderable texture!
• Reduces texture bandwidth requirements by eliminating one of the Poisson 

disc filtering steps

N.L

N.L
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Ambient Aperture Lighting

Part 2 of 2:
Ambient Aperture Lighting
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What is Ambient Aperture lighting?

• Shading model that uses apertures to approximate a visibility function
• Precomputed visibility
• Dynamic spherical area light sources 
• Dynamic point light sources
• Hard & Soft shadows

• Similar to horizon mapping, but allows for area light sources
• The “ambient” comes from the fact that we use a modified ambient 

occlusion calculation to find an aperture of average visibility
• Developed with Terrain rendering in mind but can be used for other 

things as well…
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What are the applications?

• Non-deformable models
• Terrains
• Static scene elements

• Buildings
• Statues

• Dynamic spherical area light sources
• Hard & Soft shadows 

• Applications where performance is critical and rendering must still 
look realistic (but not necessarily physically correct)
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How does it work?

• Ambient aperture lighting works in 2 stages
• Precomputation Stage

• Visibility function is computed at every point on mesh
• Per-vertex or per-pixel

• Visibility function is stored using a spherical cap
• Spherical cap stores an average, contiguous region of visibility

• A spherical cap is a portion of a sphere cut off by a plane (a hemisphere itself is a 
spherical cap)

• Rendering Stage
• Spherical cap acts as an aperture
• Aperture is used to restrict incoming light so that it only enters the from visible 

(un-occluded) directions
• Area light sources are projected onto the hemisphere and are clipped against the 

aperture
• This determines how much of their light passes through the aperture
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Precomputation stage

• The precomputation stage can be thought of as a two step 
process:

• Step 1:
• Find visible area

• Area of hemisphere that is unoccluded by the surrounding scene

• This serves as the area of our aperture/spherical cap

• Step 2:
• Find average direction of visibility

• Just like finding a bent normal
• Average of all un-occluded rays fired from a given point

• This serves as the orientation of our aperture/spherical cap



Game Developer's Conference 2006: San Jose, CA 31

Visible area (aperture size)

• For every point on the mesh (vertex/pixel):
• Cast a bunch of rays
• Determine what percentage of rays reach infinity (un-occluded)

• Gives you a percentage of visibility
• Like finding ambient occlusion but you don’t weight samples by cos(theta)

• Multiply by 2PI (area of unit hemisphere)
• Gives you an average area of visibility

• The average area of visibility is used as our aperture size. 
• We are making the assumption that the visible area on the hemisphere 

forms a contiguous circular region (i.e. a spherical cap)
• We’ll need the arc length of the cap’s radius at render time:

• arc length of radius = acos( -area/2PI + 1 )
• Single float value, stored per vertex/pixel
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Visible direction (aperture orientation)

• For every point on the mesh (vertex/pixel):
• Cast a bunch of rays
• Determine average direction for which rays reach infinity (un-occluded)

• This is frequently referred to as a bent normal

• This gives you the average direction of visibility
• Use this for your aperture’s orientation
• A float3 per vertex/pixel
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How to render using apertures?

• Project spherical area light source onto hemisphere
• Projected area light source covers some area of the hemisphere

• Projected sphere forms a spherical cap, just like our aperture

• Find the intersection of the projected light’s spherical cap and the 
aperture’s spherical cap

• Once the area of intersection is found, we know the portion of the 
light source that passes through the aperture
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Finding area of intersection

• Intersection area of two spherical caps is a function of the arc lengths of 
their radii (r0, r1) and the distance between their centroids (d)

• If d >= r0 +r1
• No intersection
• Thus area is 0

• If min(r0,r1) <= max(r0,r1)-d
• Fully intersected
• Use the area of the smallest cap
• Area of cap:   

• Otherwise…
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Spherical cap intersection

• Oh no!
• After all our simplifications, we’re left with this monster to solve!
• Let’s take a closer look at the intersection area function…

*Simplified form of intersection area function given by [Tovchigrechko]
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Intersection function

• Case 1 and 3 handled by our early outs
• Case 1 : Full intersection
• Case 3 : No intersection

• Intersection area decreases as caps move away from each other
• Rate of falloff is inversely proportional to the area of the two spherical caps

• Bigger caps have slower falloff
• Smaller caps have faster falloff
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Smoothstep saves the day

• Case 1: Full intersection
• Smoothstep returns 1

• Case 2: Partial intersection
• Smoothstep returns smooth falloff (depending on amount of overlap)
• Gives a smooth transition from full intersection to no intersection

• Case 3: No intersection
• Smoothstep returns 0

Area of smallest spherical cap
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Intersection area approximation

// Approximate the are of intersection of two spherical caps
// fRadius0 : First cap’s radius (arc length in radians)
// fRadius1 : Second caps’ radius (in radians)
// fDist : Distance between caps (radians between centers of caps)
float SphericalCapIntersectionAreaFast ( float fRadius0, float fRadius1, float fDist )
{

float fArea;

if ( fDist <= max(fRadius0, fRadius1) - min(fRadius0, fRadius1) )
{

// One cap in completely inside the other
fArea = 6.283185308 - 6.283185308 * cos( min(fRadius0,fRadius1) );

}
else if ( fDist >= fRadius0 + fRadius1 )
{

// No intersection exists
fArea = 0;

}
else
{

float fDiff = abs(fRadius0 - fRadius1);
fArea = smoothstep(0.0, 

1.0,
1.0-saturate((fDist-fDiff)/(fRadius0+fRadius1-fDiff)));

fArea *= 6.283185308 - 6.283185308 * cos( min(fRadius0,fRadius1) );
}
return fArea;

}
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Don’t forget about our friend Lambert

• Reflectance is determined by the area of intersection and Lambert’s Cosine 
Law

• Find a vector to the centroid for the region of intersection
• This is estimated by averaging the aperture’s vector and the light’s vector
• Scale the intersection area by N.Vcentroid

• IntersectionArea * saturate(N.Vcentroid)

• This provides a Lambertian falloff as the light source approaches the horizon

• Just another approximation on top of all the others we’re making ☺
• Assumes the area above intersection’s centroid is about the same as the 

area below the intersection’s centroid
• Negative error above the centroid cancels the positive error below the 

centroid
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Ambient light

• We now have a function for finding direct lighting from area light 
sources, but we’d like to incorporate some form of ambient light to 
account for light scattered in from the sky

• Treat sky as if it were a giant area light behind the sun:
• Compute area light/aperture intersection
• If area of intersection is less that area of aperture, fill the missing 

space with indirect “ambient light”
• For a terrain, use the average sky color (lowest MIP level of sky dome?)

• Blue during the day
• Redish-pink at sun set
• Black at night

• Works better than the standard constant ambient term
• Only applies to areas that aren’t being lit directly and aren’t totally 

occluded from the outside world
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Demo: Terrain
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What are the benefits of this technique?

• Area light sources
• Better than N.L with point light sources
• Hard shadows for small area light sources
• Soft shadows for large area lights sources

• Small storage requirements
• Just 4 floats per-vertex or per-pixel
• Or 3 floats if you store aperture orientation in tangent space and 

derive z component in your shader

• Doesn’t require additional transforms 
• Shadow maps require transforming model one or more extra times

• Very cheap to compute
• Just a handful of vertex shader or pixel shader instructions
• Gives pleasing results
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What are the potential downfalls?

• Assumes visible region is contiguous and circular
• Sphere over plane (see example)
• Which way should visibility aperture point?
• Visible region is a band around the horizon, this is poorly approximated by a spherical cap

• Multiple light sources don’t occlude each other
• You’d have to compute area of overlap to make sure you don’t over light
• In practice this isn’t necessarily a huge issue (people expect 2 light sources to make things twice as bright)

• Assumes non-local light sources
• Light source can’t be between point being shaded and it’s blocker
• Results in incorrect shadowing

• Works well with terrains
• Terrains typically have nicely behaving visibility functions
• Occlusion is a band along the horizon
• Visibility region is generally a contiguous, circular region somewhere in the sky
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Taking it to the next level

• Multiple visibility apertures
• Fixes case where you’re in a room with multiple windows
• Multiple contiguous regions of visibility

• Occlusion “anti-apertures”
• Contiguous regions of occlusion
• Fixes sphere over plane case
• Spherical cap intersection gives amount of occlusion rather than amount of light
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Preprocessor optimizations

• Speed up or even eliminate the preprocessing step
• Exploit the fact that Aperture can be computed using modified ambient 

occlusion and bent normal preprocessors

• Google for:

• GPU accelerated ambient occlusion
• Improve preprocessing speed
• D3DX provides a GPU accelerated SH direct lighting function

• First coefficient can be used to approximate visible area
• Next 3 coefficients approximate average visible direction

• Dynamic ambient occlusion
• Eliminate the need to preprocess 
• Allows for deformable meshes 
• Probably isn’t realistic for your performance needs
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Conclusion

• Two techniques that use various mathematical approximations
and make simplifying assumptions to enable us to render 
expensive looking graphics

• Multi-Layered Materials
• Depth parallax
• Light diffusion

• Ambient Aperture Lighting
• Area light sources
• Hard & Soft shadows
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Thank you!

I would like to thank Pedro Sander for his thoughtful 
discussion and collaboration on the Ambient Aperture 
work.

Thanks to Eli Turner for providing the human heart 
model and textures. 
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Questions?

Chris Oat
coat@ati.com

These slides are available for download:
www.ati.com/developer
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We’re hiring!

3D Applications Research Group
Demo Team

Research Team
Tools team

Visit our web site:
http://www.ati.com/companyinfo/careers/

Mention 3DARG and the team you’re interested 
in joining!


