Vulikan.

Vulkan Ray Tracing - 5 New Shader Types!

Analog Ray Tracing Example ©

Oregon State University Computer Graphics

Digital Ray Tracing Examples

Blender

In a Raytracing, each ray typically hits a lot of Things

Given:
\mathbf{S} is the (x, y, z) starting point
\mathbf{Q} is the (x, y, z) direction of travel
Then, the (x, y, z) position of a point p at some position along its direction of travel is:

$$
\begin{gathered}
p=S+t Q \\
\mathrm{t} \geq 0 .
\end{gathered}
$$

Sphere equation: $\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}+\left(z-z_{c}\right)^{2}=R^{2}$
Ray equation: $(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)+\mathrm{t}^{\star}(\mathrm{dx}, \mathrm{dy}, \mathrm{dz})$
Plugging (x, y, z) from the second equation into the first equation and multiplying-through and simplifying gives:

$$
A t^{2}+\mathrm{Bt}+\mathrm{C}=0 \quad \mathrm{t}_{1}, \mathrm{t}_{2}=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}
$$

Solve for t_{1}, t_{2} and analyze the solution like this:

1. If both t_{1} and t_{2} are complex (i.e., have an imaginary component), then the ray missed the sphere completely.
2. If both t_{1} and t_{2} are real and identical, then the ray brushed the sphere at a tangent point.
3. If both t_{1} and t_{2} are real and different, then the ray entered and exited the sphere.

It's often useful to be able to parameterize a triangle into (u, v), like this:

We want to find out where the ray intersects the triangle.
That is, where is the point \boldsymbol{p} that is common to both the ray and the triangle?

Triangle: $p=P 0+u^{*}(P 1-P 0)+v^{*}(P 2-P O)$

$$
\text { Ray: } p=S+t Q
$$

Re-arranging:

$$
P O+u^{*}(P 1-P O)+v^{*}(P 2-P O)=S+t Q
$$

Re-arranging some more:

$$
-t Q+u^{*}(P 1-P O)+v^{*}(P 2-P O)=S-P O
$$

Then collecting terms, we get:

$$
A t+B u+C v=D
$$

where:

$$
\begin{aligned}
& A=-Q \\
& B=P 1-P O \\
& C=P 2-P O \\
& D=S-P O
\end{aligned}
$$

Remembering that this equation is really 3 equations in (x, y, z):

$$
A t+B u+C_{v}=D
$$

we have 3 equations with 3 unknowns, which can be cast into a matrix form

$$
\left[\begin{array}{ccc}
A_{x} & B_{x} & C_{x} \\
A_{y} & B_{y} & C_{y} \\
A_{z} & B_{z} & C_{z}
\end{array}\right]\left\{\begin{array}{c}
t \\
u \\
v
\end{array}\right\}=\left\{\begin{array}{l}
D_{x} \\
D_{y} \\
D_{z}
\end{array}\right\}
$$

Our goal is to solve this for $\mathrm{t}^{*}, \mathrm{u}^{*}$, and v^{*}

Solve for ($\mathbf{t}^{*}, \mathbf{u}^{*}, \mathbf{v}^{*}$) using Cramer's Rule

$$
\left[\begin{array}{ccc}
A_{x} & B_{x} & C_{x} \\
A_{z} & B_{y} & C_{y} \\
A_{z} & B_{z} & C_{z}
\end{array}\right]\left\{\begin{array}{l}
t \\
u \\
v
\end{array}\right\}=\left\{\begin{array}{l}
D_{x} \\
D_{y} \\
D_{z}
\end{array}\right\}
$$

OregonState
University
Computer Graphics

$$
\begin{aligned}
& D_{0}=\operatorname{det}\left[\begin{array}{lll}
A_{x} & B_{x} & C_{x} \\
A_{y} & B_{y} & C_{y} \\
A_{z} & B_{z} & C_{z}
\end{array}\right] \\
& D_{t}=\operatorname{det}\left(\begin{array}{ccc}
D_{x} & B_{x} & C_{x} \\
D_{y} & B_{y} & C_{y} \\
D_{z} & B_{z} & C_{z}
\end{array}\right] \quad \boldsymbol{t}^{*}=\frac{\boldsymbol{D}_{\boldsymbol{t}}}{\boldsymbol{D}_{\mathbf{0}}} \\
& D_{u}=\operatorname{det}\left[\begin{array}{llll}
A_{x} & D_{x} & C_{x} \\
A_{y} & D_{y} & C_{y} \\
A_{z} & D_{z} & C_{z}
\end{array}\right] \\
& D_{v}=\operatorname{det}\left[\begin{array}{lll}
A_{x} & B_{x} & D_{x} \\
A_{y} & B_{y} & D_{y} \\
A_{z} & B_{z} & D_{z}
\end{array}\right] \quad \boldsymbol{v}^{*}=\frac{\boldsymbol{D}_{\boldsymbol{v}}}{\boldsymbol{D}_{\mathbf{0}}} \\
& \begin{aligned}
\boldsymbol{u}^{*} & =\frac{\boldsymbol{D}_{\boldsymbol{u}}}{\boldsymbol{D}_{\mathbf{0}}} \\
\boldsymbol{v}^{*} & =\frac{\boldsymbol{D}_{\boldsymbol{v}}}{\boldsymbol{D}_{\mathbf{0}}}
\end{aligned}
\end{aligned}
$$

1. Compute D_{0}
2. If $D_{0} \approx 0$., then the ray is parallel to the plane of the triangle
3. Compute D_{t}
4. Compute t*
5. If $\mathrm{t}^{*}<0$., the ray goes away from the triangle STOP
6. Compute D_{u}
7. Compute u^{*}
8. If $u^{*}<0$. or $u^{*}>1$., then the ray hits outside the triangle STOP
9. Compute D_{v}
10. Compute v^{*}
11. If $v^{*}<0$. or $v^{*}>1$.- u^{*}, then the ray hits outside the triangle STOP
12. The intersection is at the point $\boldsymbol{p}=\boldsymbol{S}+\boldsymbol{Q} \boldsymbol{t}^{*}$

The Rasterization Shader Pipeline That You Are used to Doesn't Apply to Vulkan Ray Tracing

- A Ray Generation Shader runs on a 2D grid of threads. It begins the entire ray-tracing operation.
- An Intersection Shader implements ray-primitive intersections.
- An Any Hit Shader is called when the Intersection Shader finds a hit. It decides if that intersection should be accepted or ignored.
- The Closest Hit Shader is called with the information about the hit that happened closest to the viewer. Typically, lighting is done here, or firing off new rays to handle shadows, reflections, and refractions.
- A Miss Shader is called when no intersections are found for a given ray. Typically, it just sets its pixel color to the background color.
- A Bottom-level Acceleration Structure (BLAS) reads the vertex data from vertex and index VkBuffers to determine bounding boxes.
- You can also supply your own bounding box information to a BLAS.
- A Top-level Acceleration Structure (TLAS) holds transformations and pointers to multiple BLASes.
- The BLAS is essentially used as a Model Coordinate bounding box, while the TLAS is used as a World Coordinate bounding box.

Oregon State University
Computer Graphics

Acceleration Structure

Bottom Level
Acceleration Structure

