
ACM Reference Format
Liu, T., Hertzmann, A., Li, W., Funkhouser, T. 2015. Style Compatibility For 3D Furniture Models.
ACM Trans. Graph. 34, 4, Article 85 (August 2015), 9 pages. DOI = 10.1145/2766898
http://doi.acm.org/10.1145/2766898.

Copyright Notice
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or commercial advantage and that
copies bear this notice and the full citation on the fi rst page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee. Request
permissions from permissions@acm.org.
SIGGRAPH ‘15 Technical Paper, August 09 – 13, 2015, Los Angeles, CA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3331-3/15/08 ... $15.00.
DOI: http://dx.doi.org/10.1145/2766898

Style Compatibility for 3D Furniture Models

Tianqiang Liu1 Aaron Hertzmann2 Wilmot Li2 Thomas Funkhouser1

1Princeton University 2Adobe Research

(a) Ignoring style compatibility (b) Optimizing style compatibility

Figure 1: This paper proposes a method to learn a metric for stylistic compatibility between furniture in a scene. (a) The image on the left
shows a plausible furniture arrangement, but with a randomly chosen mix of clashing furniture styles. The scene on the right has the same
arrangement but with furniture pieces chosen to optimize stylistic compatibility according to our metric.

Abstract

This paper presents a method for learning to predict the stylistic
compatibility between 3D furniture models from different object
classes: e.g., how well does this chair go with that table? To do
this, we collect relative assessments of style compatibility using
crowdsourcing. We then compute geometric features for each 3D
model and learn a mapping of them into a space where Euclidean
distances represent style incompatibility. Motivated by the geomet-
ric subtleties of style, we introduce part-aware geometric feature
vectors that characterize the shapes of different parts of an object
separately. Motivated by the need to compute style compatibility
between different object classes, we introduce a method to learn
object class-specific mappings from geometric features to a shared
feature space. During experiments with these methods, we find that
they are effective at predicting style compatibility agreed upon by
people. We find in user studies that the learned compatibility met-
ric is useful for novel interactive tools that: 1) retrieve stylistically
compatible models for a query, 2) suggest a piece of furniture for an
existing scene, and 3) help guide an interactive 3D modeler towards
scenes with compatible furniture.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms

Keywords: style, compatibility, crowdsourcing, scene synthesis

1 Introduction

Modeling 3D scenes is one of the most common creative tasks in
computer graphics. Large online repositories of 3D models make it
possible for novice users and/or automatic programs to create new
scenes by assembling models of objects found online. For example,
the arrangement of furniture shown in Figure 1(a) was created with
a tool that allows a person to select and place objects interactively.

While many existing tools help users select the appropriate cate-
gories and placements of objects when modeling a 3D scene [Mer-
rell et al. 2011; Yu et al. 2011], they generally ignore style com-
patibility — the degree to which objects “exist together in har-
mony” [Merriam-Webster 2004]. For example, while the scene
shown in Figure 1(a) has a plausible spatial arrangement of objects
appropriate for a living room, it contains a mish-mash of different
styles — e.g., a casual contemporary coffee table appears in front
of a formal antique sofa. The jarring juxtaposition of incompatible
styles diminishes the plausibility of this scene.

The goal of this paper is to develop a mathematical representation
of style compatibility between objects that can be used to guide
3D scene modeling tools. More specifically, we consider the com-
patibility of furniture in indoor scenes, because furniture exhibits a
diverse range of distinct styles, some of which are more compatible
than others, and because indoor scenes account for a large fraction
of scene modeling tasks. Our work focuses on understanding how
the geometry of 3D models influences their stylistic compatibility.
We leave the study of compatibility for other properties (materials,
colors, etc.) for future work.

There are three main challenges in developing a style compatibil-
ity metric for furniture shapes. First, a person’s notion of furni-
ture style usually combines many subtle factors [Miller 2005] that
would be hard to encode in a hand-tuned mathematical function.
Instead, we learn a metric from examples. Second, furniture shapes
are influenced by both function and style, with functional require-
ments reflected largely in the gross shapes and arrangements of
parts, and styles reflected largely in the geometric details of parts
(e.g., fluted legs, wing-tipped backs, etc.). Accordingly, we intro-
duce part-aware shape features aimed at capturing the geometric
details related to style. Third, style compatibility requires com-

ACM Transactions on Graphics, Vol. 34, No. 4, Article 85, Publication Date: August 2015

parisons of models from different object classes, which may have
different dimensionalities and distributions of features. We intro-
duce a compatibility metric based on class-specific mappings that
transform geometric features to a class-independent feature space.

In our approach, we first collect crowdsourced preference data
about which furniture models people consider to be compatible
(Section 3). Our system performs a consistent segmentation of
models within the same object class and computes a part-aware
geometric feature vector for each model (Section 4). We then
learn a compatibility metric using the part-aware geometric features
and crowdsourced preferences (Section 5); quantitative evaluation
shows that this method gives more accurate predictions than exist-
ing methods (Section 6). The learned metric can then be used to
reason about style compatibility in retrieval and interactive model-
ing applications (Section 7).

The main contribution of our work is in proposing the first method
for learning style compatibility between 3D models from differ-
ent object classes. In particular, our method introduces a part-
aware geometric feature vector that encodes style-dependent infor-
mation, and presents a new asymmetric embedding distance that is
appropriate for estimating compatibility between objects of differ-
ent classes. Furthermore, we demonstrate the utility of our learned
metric in three novel style-aware scene modeling applications: re-
trieving furniture that is stylistically compatible with a query; sug-
gesting a piece of furniture to include in an existing room; and help-
ing people interactively build scenes with compatible furniture.

2 Related Work

Shape styles. Researchers have developed methods to model
styles of 2D and 3D shapes [Xu et al. 2010; Li et al. 2013; Ma et al.
2014]. For example, Xu et al. [2010] investigate style variations
that are caused by anisotropic part scaling. Li et al. [2013] propose
a method to classify and synthesize 2D shapes styles according to
curvature features. Rather than focusing on a specific source of
shape style variation, our work develops a method to quantify style
compatibility, which is usually determined by multiple aspects of
shape styles.

Huang et al. [2013] propose a fine-grained classification approach
by learning a distance metric from a 3D model collection with par-
tial and noisy labels. Kalogerakis et al. [2012] develop a probabilis-
tic model based on shape similarity and learned probability distri-
butions for co-occurrences of discrete clusters of parts. Both of
these approaches aim to capture style variations within a 3D model
collection of a single object class and are not directly applicable to
predicting style compatibility for different object classes within a
scene.

Similarity metric learning. Our work is related to similarity
metric learning in other domains. Researchers have used crowd-
sourced data to learn similarity metric for fonts [O’Donovan et al.
2014] and illustration styles [Garces et al. 2014]. Relative at-
tributes have been learned from visual features for image analysis
[Parikh and Grauman 2011] and from shapes for 3D model cre-
ation [Chaudhuri et al. 2013]. We build on this work, but focus
on learning compatibility rather than similarity, which entails a dif-
ferent crowd study design, as well as a new distance function for
heterogeneous data (e.g., comparing tables to chairs).

In concurrent work, Lun et al. [2015] measure 3D style similarity
based on similarity of object elements. Their method, unlike ours,
may generalize to object classes unseen in the training data. How-
ever, theirs may perform poorly for objects without corresponding
elements (e.g., floor lamp and sofa). In contrast, our work aims

Figure 2: Style compatibility study. In each task, we fix one fur-
niture piece (e.g., the dining table), and show six different pieces
of another object class (e.g., dining chair) with it. In each pair,
the two furniture pieces are shown in the arrangement of a typical
scene (e.g., chair next to table). We ask the rater to select the two
pairs that are stylistically most compatible. In this example, most
raters select the bottom-middle and the bottom-right pairs.

to quantify style similarity across classes, and is not dependent on
geometric similarity.

Shape-based retrieval. Our work is informed by prior work on
shape-based retrieval of 3D models. Researchers previously have
developed search algorithms for 3D models based on similarities in
shapes [Funkhouser et al. 2003], symmetries [Kazhdan et al. 2004],
part structures [Shapira et al. 2010], and other geometric cues [Tan-
gelder and Veltkamp 2008]. However, these methods are generally
geared toward retrieving similar shapes from the same object class.
No previous system has considered stylistic compatibility between
objects of different classes in a 3D model retrieval system.

Virtual world synthesis. Several systems have been developed
to assist people in creating virtual worlds by combining 3D mod-
els from online repositories, including ones that suggest new ob-
jects for a scene based on spatial context [Fisher and Hanrahan
2010], probabilistic models [Chaudhuri et al. 2011; Kalogerakis
et al. 2012], physical simulations [Umetani et al. 2012], and in-
terior design guidelines [Merrell et al. 2011]. Other systems have
aimed to create scenes completely automatically, for example learn-
ing object compatibilities based on substructure symmetries [Zheng
et al. 2013], spatial contexts [Fisher et al. 2012; Fisher et al. 2011],
and object contacts [Akazawa et al. 2005]. However, no prior sys-
tem has explicitly considered stylistic compatibility when selecting
objects to combine in a virtual world.

3 Crowdsourcing Compatibility Preferences

The first step in our process is to collect data for object compatibil-
ity using crowdsourcing. Our study is based on previous methods
for crowdsourcing similarity. However, we focus on style compati-
bility rather than similarity, and modify the study questions appro-
priately. We gather compatibility preferences in the form of triplets
(A,B,C). Each triplet represents a human evaluation whether ref-
erence object A is more compatible with object B or with object
C. For example, given a sofa A, a human rater might be asked to
judge whether chair B or chair C is more compatible with it. B
and C are always from the same object class, and A is always from
a different class.

To gather triplets efficiently, we use the grid technique proposed by
Wilber et al. [2014]. Each task evaluates six target objects together
with a reference objectA. The worker is shown a grid of six images,
each one pairingA together with a different target object (Figure 2).
The rater must select the two target objects that are most compatible
withA. Each response is then converted to 8 triplets: each of which
consists of one object that is selected, one object that is not selected,

85:2 • T. Liu et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 85, Publication Date: August 2015

(a) Dining room (b) Living room

Figure 3: Pairs of object classes for which style compatibility pref-
erences are collected in our study. We chose pairs with close prox-
imity and functional interactions.

and the reference object. As demonstrated by Wilber et al. [2014],
this format is more efficient than asking the participant to pick the
best between two.

In our experiments, we first collected 3D furniture models for two
types of scenes, dining rooms and living rooms, from the Digima-
tion Archive model collection and Trimble 3D Warehouse. We col-
lected 3 object classes for dining rooms: 50 dining chairs, 34 dining
tables, and 21 ceiling lamps. We collected 7 object classes for liv-
ing rooms: 49 coffee tables, 39 sofas, 37 chairs, 36 arm chairs, 42
end tables, 28 table lamps, and 23 floor lamps.

Then, we crowdsourced preference data for all pairs of classes
linked in Figure 3 using Amazon Mechanical Turk (AMT). For
each pair of object classes, we randomly generated 50 questions
and picked 4 to use as control questions to test participant consis-
tency; responses to the control questions were not used for learning.
We split the questions into two Human Intelligence Tasks (HITs).
Each HIT includes 25 questions and the 4 control questions, and
each control question is asked twice with images in different or-
ders. Each HIT was done by 50 different participants. To filter out
lazy participants, we excluded a response if the participant (1) spent
less than 15 seconds per question on average (filtering 57% of all
responses) or (2) had less than 5 selections in common amongst the
two sets of control questions (filtering 40% of the responses that
are kept from (1)). This process yielded 20,200 responses (on 2956
unique triplets) for objects found in dining rooms, and 63,800 re-
sponses (on 8909 unique triplets) for objects in a living room.

Analyzing this data, we find that raters on AMT strongly agree
on a minority, but significantly-larger-than-random, subset of the
triplets. Among the 1,919 unique living room triplets for which
at least 10 valid responses were collected, the number where 90%
of raters agreed is 5 times larger than random (10% vs. 2%), and
it is 7 times larger for the 598 such triplets in dining rooms (14%
vs. 2%). This result is consistent with our subjective impression
that each object in our data set contains just a few others for which
it is strongly compatible (e.g., an IKEA table and an IKEA chair)
or incompatible (e.g., an IKEA table with an ornate antique chair).
People detect these important cases consistently, but there are many
cases for which triplet comparisons are not meaningful, e.g., an
IKEA table with a Queen Anne chair versus a Chippendale chair.
We leave exploration of this particular hypothesis for future work.

4 Part-aware Geometric Features

Our next goal is to define a feature vector x of geometric prop-
erties indicative of an object’s style. This problem is challenging
because stylistic differences between objects in the same class are
often due to subtle deviations from a common overall shape. There-
fore, often-used shape descriptors geared for object classification,

which aim to capture the overall shape of an object, are not appro-
priate for our task.

Our key observation is that furniture styles are often strongly con-
nected to characteristic features of individual parts. For exam-
ple, chairs of Queen Anne style often have cabriole legs and vase-
shaped splats, while chairs of Gustavian style have fluted legs and
oval-shaped backs [Miller 2005]. As a result, we are motivated to
describe objects with part-aware geometric features.

Our approach is to compute a consistent segmentation of all ob-
jects within the same class, compute geometric features for each
part separately, and then represent each object by the concatenation
of feature vectors for all of its parts and its entire shape. This ap-
proach has the advantage that distinctive features of one part are
not blended with features of another. For example, curvature his-
tograms computed for the carved back of a Chippendale chair are
kept separate from those of its smooth seat cushion. The result is
a part-aware geometric feature vector that is better suited for char-
acterizing styles. Unlike previous methods, our approach produces
feature vectors with higher dimensionality for object classes with
more parts.

Our implementation leverages the consistent segmentation algo-
rithm of Kim et al. [2013]. Given a collection of models of the same
object class and a single template, the algorithm produces a consis-
tent segmentation and labeling for all models. For each labeled part
and for the entire shape, we compute a geometric feature vector
with 79 dimensions representing curvatures for different neighbor-
hoods, shape diameter functions, bounding box dimensions, and
surface areas, all computed with methods based on Kalogerakis et
al. [2012]. Please refer to the supplemental materials for details.

5 Learning Compatibility

Given the crowdsourced triplet data and the part-aware geometric
features, our next goal is to learn a measure of the compatibility be-
tween a pair of models from different object classes. In particular,
let xi, xj be feature vectors for models i and j, possibly with dif-
ferent dimensionalities. We want a function d(xi,xj) that scores
compatibility, with lower values being more compatible. A key
challenge is that different object classes may have feature vectors
with different elements, and so direct distance computation is not
possible.

Previous work [Kulis 2012; O’Donovan et al. 2014; Garces et al.
2014] has employed distance functions of the form

dsymm(xi,xj) = ||W(xi − xj)||2 (1)

In the simplest case, W may be a diagonal matrix, representing
scaled Euclidean distance between feature vectors. Alternatively,
it may be represented as a K × D embedding matrix that projects
the input feature into aK-dimensional space for comparison [Kulis
2012]. The above distance assumes that all objects have the same
type of feature vectors.

In order to handle heterogeneous furniture types, we propose to
learn a separate embedding matrix Wc for each class c. The dis-
tance function is then:

dasymm(xi,xj) = ||Wc(i)xi −Wc(j)xj ||2 (2)

In other words, objects are compared by first projecting them into a
shared, K-dimensional embedding space, but using a separate pro-
jection matrix for each class. For example, a table would be pro-
jected as y1 = Wtablex1, which could then be compared to a chair
y2 = Wchairx2 (Figure 4). We refer to this as the asymmetric em-
bedding distance. This model is related to Canonical Correlation

Style Compatibility for 3D Furniture Models • 85:3

ACM Transactions on Graphics, Vol. 34, No. 4, Article 85, Publication Date: August 2015

Style Feature Space

Wtable Wchair

x1

y1

... ...

x3

x5

x2

x4

x6

y3

y5

y2

y4 y6

Figure 4: Mapping into shared feature space. We learn separate
embedding matrices for each object class that map shapes into a
shared feature space where objects that are stylistically compatible
are close to each other. Here, old-fashioned chairs and tables are
clustered at the top, while modern objects are clustered in bottom
left. Feature vectors for different classes may have different dimen-
sionality based on the number of parts.

Analysis [Hotelling 1936] and Neighborhood Components Analy-
sis [Goldberger et al. 2004], but trained in a supervised manner in
order to predict compatibility from triplets.

Note that this formulation does not require that each vector even
have the same dimensionality; in principle, it could be used for
compatibility of different types of entities, such as material and ge-
ometry, or images and colors.

Given a distance function, learning proceeds similar to previous
work [O’Donovan et al. 2014; Garces et al. 2014]. The probability
that a rater evaluates object A as more compatible to B than to C
is modeled as a logistic function:

PA
B,C =

1

1 + exp(d(xA,xB)− d(xA,xC))
(3)

Learning is performed by minimizing the negative log-likelihood of
the training triplets D with regularization:

E(W1:M) = − 1

|D|
∑

(A,B,C)∈D

logPA
B,C +

λ

M

∑
1≤c≤M

R(Wc)

(4)

where |D| is the number of triplets, M is the number of object
classes, and R is the regularization term.

For learning, we represent each mapping as a product of two matri-
ces: Wc = Wopt

c WPCA
c . The first matrix WPCA

c is obtained by
performing 21-dimensional Principal Components Analysis (PCA)
on each object class separately. The second matrix is the obtained
by optimizing E(W1:M) using BFGS [Zhu et al. 1997], for either
the symmetric or asymmetric model. The PCA step is used for
two reasons: first, it allows us to directly compare the symmetric
and asymmetric models, since the symmetric model cannot be used
on our heterogeneous input features; second, it makes optimization
faster, since the input dimensionality is very large.

Regularization can be used to perform feature selection, i.e., to zero
out the weights for dimensions after PCA analysis. Feature selec-
tion is used because we believe that some of the dimensions are
not helpful for measuring compatibility, but it is difficult a priori

Method Dining room Living room
Chance 50% 50%

Euclidean 69% 58%
Ours 73% 72%

People 93% 99%

Table 1: Accuracy of style compatibility rankings generated by ran-
dom, Euclidean distance on non-part-aware features (with PCA),
our method, and people for triplets of furniture models. The test
set is filtered for consistency among human raters, hence the high
scores among human raters.

to know which dimensions are necessary. Previous work has used
the L1-norm to sparsify weight vectors [Garces et al. 2014]. How-
ever, applying the L1-norm to the entries of the embedding matrix
(R(Wc) = |Wc|1), would only have the effect of sparsifying in-
dividual matrix entries, rather than eliminating entire dimensions.

We instead use Group Sparsity for regularization:

R(Wc) =
1

KD

∑
1≤`≤D

||w`||2 (5)

which applies the L2-norm to each column w` of the compo-
nent Wopt

c of the embedding matrix Wc. As shown by Bach et
al. [2012], this has the effect of sparsifying entire columns of the
matrix. It can be interpreted as applying the L1 norm to the mag-
nitude of the column; it is a generalization of applying L1 to the
individual matrix entries.

We use K = 8 and λ = 2 in all experiments, except where noted.
Our algorithm was implemented in Python. We set the maximum
number of iterations in BFGS to be 2000, and it takes up to 70
minutes to solve W1:M .

6 Results: Triplet Prediction

We ran a series of experiments to test how well our algorithm is
able to predict the relative style compatibility between furniture of
different object classes, using hold-out triplet data. We consider
our basic algorithm, as well as variants with the novel aspects de-
scribed in the previous sections disabled to investigate their impact
on the results. This section presents a summary of the results –
please refer to the supplemental materials to see the complete set of
experimental data.

As discussed previously, many of the triplets in the crowdsourcing
study described in Section 3 are inherently ambiguous, e.g., two
furniture items are equally similar or dissimilar to the reference ob-
ject. Thus, we formed the test set for our prediction experiments by
only considering triplets where raters had strong agreement. Specif-
ically, we include a crowdsourced triplet in the test set if: (1) at least
75% of raters agreed on the most-compatible object, and (2) there
are sufficient numbers of triplets to estimate this percentage, evalu-
ated by a Binomial Test and comparing the p-value to a threshold.
Aiming for ∼ 250 triplets, we set the threshold to 0.05 for the din-
ing room test set, which yields 264 triplets; and 0.01 for the living
room test set, which yields 229 triplets (the null hypothesis is that
people do not have a preference in the triplet).

For each test triplet, we trained our algorithm using all crowd-
sourced triplets in the same scene (living room or dining room) that
do not share any data with the test triplet. We then ran our algorithm
to predict the relative compatibility of the two candidate objects and
check to see whether it matches the object selected by the major-
ity of people. Our overall accuracy measure is the percentage of
triplets for which the prediction matches.

85:4 • T. Liu et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 85, Publication Date: August 2015

Method Dining room Living room
No part-aware, Symmetric 63% 55%

Part-aware, Symmetric 63% 65%
No part-aware, Asymmetric 68% 65%

Part-aware, Asymmetric (Ours) 73% 72%

Table 2: Impact of part-aware features and asymmetric embedding.
Accuracy of style compatibility rankings for our algorithm with and
without part-aware features and asymmetric embedding enabled.

Training set Dining room Living room
Same-task triplets 61% 65%
Same-pair triplets 73% 66%
All triplets (Ours) 73% 72%

Table 3: Impact of shared models. Accuracy of style compatibility
rankings for our algorithm using different training sets.

Table 1 shows the overall accuracy of our algorithm (Ours) in com-
parison to a random prediction (Random) and to selections made
by people (People). Since the test set only contains triplets for
which people strongly agree, it is not surprising that they have high
accuracy in this evaluation (93%, 99%). Euclidean distance on
PCA-reduced feature vectors (Euclidean) performs above chance,
though not much better for the more-complex living room arrange-
ment. Our method does not achieve as high accuracy (73%, 72%) as
people, but it does perform significantly better than random (50%,
50%).

By using Group Sparsity, we discard 0 to 9 of the 21 input PCA
dimensions, depending on the object class experimented on.

Impact of part-aware geometric features. We ran a second ex-
periment to test how part-aware geometric features help capture
style characteristics. To test this, we compare our results to an al-
ternative method, in which the same set of geometric features are
computed without separating them according to the consistent part
segmentation. Results are shown in Table 2. The accuracy of our
method (73%, 72%) is clearly better than that of the method without
part-aware features (68%, 65%).

Impact of asymmetric embedding. In a third experiment, we
test whether asymmetric embedding outperforms symmetric em-
bedding. Since asymmetric embedding has more free variables than
symmetric embedding, it is not suitable to assume symmetric em-
bedding works with the same set of parameters as our algorithm. To
make a fair comparison, we ran the method of symmetric embed-
ding multiple times with different combinations of parameters, and
compared the best result to the one of our method with the default
parameters (K = 8, λ = 2). Results are shown in Table 2. The per-
formance of our algorithm (73%, 72%) is significantly better than
the alternative method (63%, 65%). These results indicate that it is
beneficial to learn different embeddings for different object classes,
since the geometric features of different object classes are usually
incomparable.

One key finding is the importance of using part-aware features to-
gether with the asymmetric model. For the dining room scenario,
part-aware features provide no advantage when used with the sym-
metric model. This is likely because the symmetric model is not
designed for heterogeneous features. However, when combined
with the asymmetric model, they provide a significant boost over
the non-part-aware features.

Impact of shared models. In a fourth experiment, we test
whether it is better to learn a single model for all possible com-

patibility tasks, or to learn separate models for each type of object
pairing. We will use the notation X → Y to denote the task of,
given an object of class X , return compatible objects of type Y .
For example, chair → table is the task of finding a table to go
with a specific chair, and a triplet of this type would ask which of
two tables better matches a given chair.

We compare the following alternatives:

• Same-task triplets. For each possible task (X → Y), a sep-
arate model is learned from the X → Y subset of the train-
ing triplets. Depending on the number of tasks involved (Fig-
ure 3), an object class can have up to 6 different embedding
matrices Wc associated with it, one for each of its tasks.

• Same-pair triplets. For each pair of objects (X → Y and
Y → X tasks), a separate model is learned from the corre-
sponding subset of the training triplets. An object class can
have 1 to 3 different embedding matrices associated with it.

• All triplets. One embedding matrix is learned for each class,
jointly optimized over all training triplets.

The same dimensionality is used in each case, and so far fewer pa-
rameters are learned in our method than in the alternative methods.

Results are shown in Table 3. The results of our method are better
than or comparable to the method of training on a subset of the
triplets, which indicates that more training examples are helpful,
even when they are not examples of the same kind of task.

7 Applications

In this section, we investigate the utility of the proposed style com-
patibility metric in three applications: shape retrieval, furniture sug-
gestion, and scene building. In each case, a classic application in
computer graphics is extended to consider style compatibility.

7.1 Style-aware shape retrieval

In many cases, people want to retrieve models that are stylistically
compatible to a query model of a different object class. For exam-
ple, in an online furniture shopping system, a potential customer
may look for dining chairs that are compatible to the dining table in
his/her dining room.

To investigate this application, we have implemented a style-aware
shape retrieval system. The system asks the user to give a query
model and a target object class, and then it returns a ranked list of
models in the target object class that are most compatible to the
query according to the metric learned by our algorithm.

Figure 5 shows two examples. Given a dining table on the left, our
system returns the 5 dining chairs shown on the left as the most
compatible stylistically (for comparison, the 5 least compatible are
shown on the right). We observe that these retrieval results are gen-
erally consistent with our expectations: the system returns heavy
and ornamented chairs when the query table is heavy and orna-
mented, and it returns chairs with simple designs to match the more
streamlined table. Though these are just two examples, retrieval
results for all models are available in the supplemental material.

7.2 Style-aware furniture suggestion

When people create a virtual scene or furnish their homes, they
may want to search for a model of a known object class that is
compatible to the rest of the scene. For example, the user may want
to find a coffee table compatible with a particular sofa, chair, and

Style Compatibility for 3D Furniture Models • 85:5

ACM Transactions on Graphics, Vol. 34, No. 4, Article 85, Publication Date: August 2015

Figure 5: Style-aware shape retrieval. Given a query (dining table), our system returns 5 dining chairs that are most stylistically compatible to
the query as predicted by our learned metric. We also list the 5 most incompatible models for comparison. The numbers are the compatibility
distance d between the chairs and the query, with lower values being more compatible.

Figure 6: Style-aware furniture suggestion. Both scenes are manually created by people except for the coffee tables. Our system suggests
different coffee tables given different sets of furniture pieces in the scene to maximize style compatibility.

end table that currently are in his living room. In contrast to the
style-aware shape retrieval application, the suggestions should be
compatible with multiple objects in a scene, rather than a single
object.

We have implemented a style-aware furniture suggestion system to
test this application. We define a compatibility energy for an entire
scene as the sum of compatibility distances between all objects in
the scene:

F ({xi}) =
∑

(xi,xj)∈P

d(xi,xj) (6)

where {xi} are the models in the scene, P is the set of linked model
pairs shown in Figure 3, and d(xi,xj) is the compatibility distance
between xi and xj (Equation 2). Then, given the query object class,
we enumerate all candidate models of the object class, and return
the one that minimizes the compatibility energy F .

Evaluation. We conducted user studies to evaluate the quality
of suggestions made by our algorithm compared to random sug-
gestions and people’s selections. To generate test data, we asked
people to create stylistically compatible living room scenes using
the experimental setup described in the following subsection. In
total, participants created 14 sets of scenes that correspond to the
14 different starting configurations of the room. From this data,
we selected exactly 14 test scenes by selecting the most compati-
ble scene for each starting configuration, as judged by workers on
AMT. Then, for each test scene, we removed objects one at a time
and used our system to automatically suggest a replacement. We
also generated 10 suggestions by picking objects randomly from the
same object class. In summary, we have a total of 98 test configura-

tions (14 test scenes, 7 objects per scene) with three different types
of resulting scenes per configuration: the original scenes where all
objects are selected by the participant (People), scenes generated
with our automatic suggestions (Ours), and scenes generated with
random suggestions (Random).

We used AMT to obtain all pairwise comparisons between these
three types of scenes for each test configuration. Since we gener-
ated 10 random suggestions per configuration, there are 980 unique
comparisons for both Random vs. Ours and Random vs. People. In
addition, there are 98 comparisons for Ours vs. People. In our study,
each HIT includes between 14 and 20 comparisons, 8 of which are
repeated to test participants’ consistency. If a participant gives in-
consistent answers for more than 2/8 of these questions, we exclude
their responses from our analysis. Each unique comparison was
done by 30 different participants, and in the end, we kept 48,766
responses for analysis, which is 55% of all responses.

Table 4 summarizes the results from this experiment. Overall, 57%
of the participants preferred Ours to Random, 61% preferred People
to Ours, and 65% preferred People to Random. The results indicate
that the preference order is Random < Ours < People. It is not
surprising that people’s selections are most preferred, particularly
since these selections are picked from the scenes with the highest
overall compatibility among all the scenes that were created in the
first step. However, our suggestions are still preferred to the peo-
ple’s selections in 39% of the time, which indicates even if the user
has selected an object that is fairly compatible to the rest of the
scene, our learned metric can still produce a better suggestion in
many cases.

85:6 • T. Liu et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 85, Publication Date: August 2015

Ours vs. Random Ours vs. People
Table lamp 54% 41%
Arm chair 55% 33%
End table 55% 43%

Coffee table 56% 30%
Chair 57% 37%

Floor lamp 58% 45%
Sofa 63% 44%

Overall 57% 39%

Table 4: Style-aware furniture suggestion results. Comparison of
style compatibilities of furniture suggestion by our algorithm versus
alternative methods. For each column titled “A vs. B,” the table
lists the percentage of tasks where the furniture suggested by A is
preferred by AMT workers to the one suggested by B.

7.3 Style-aware scene building

The metric learned by our method can also provide suggestions to
help people create stylistically compatible scenes in interactive de-
sign tools. This feature could help designers of interior spaces, vir-
tual worlds, and immersive games create more plausible scenes.

To investigate this application domain, we have implemented an
interactive scene builder augmented with the compatibility metric
learned by our algorithm. The input to the system is a set of pre-
scribed object classes, an initial scene with a prescribed spatial lay-
out, and a database of 3D models labeled by object class. During
an interactive session, the user iteratively replaces models by other
models from the same object class in an effort to make the furni-
ture more compatible (Figure 7). At any time, the user is allowed
to fix/free any number of objects in the scene, and our system sug-
gests combinations of models from the database that are not cur-
rently fixed. Then, the user is able to choose one of the suggestions
to perform the replacement. This procedure repeats until the user is
satisfied with all models in the scene.

Our goal is to help people find compatible scenes efficiently, so the
suggestion list should have two properties. First, the suggestion list
should be ranked by the compatibility energy (Equation 6). Second,
the suggestion list should be diverse, so that the user can navigate
efficiently in the search space. In order to meet both properties, we
take the following strategy in our system: we maintain a candidate
set of models, which initially includes all the models. Each time we
aim to pick the suggestion that leads to the scene with the lowest
compatibility energy, and remove all the models in the suggestion
from the candidate set. We repeat this until no new suggestion can
be generated, i.e., models from one object class are used up. This
strategy ensures that the suggestion list is ranked in an increasing
order of the compatibility energy, and all suggestions are disjoint.

In contrast to style-aware furniture suggestion (Section 7.2), we aim
to update multiple models at the same time in the interactive sys-
tem, and thus the search space is prohibitively large. Fortunately,
the acyclicity of the graph formed by pairs of object classes that
are selected as semantically connected (Figure 3) allows us to use
dynamic programming to quickly find the optimal solution. Specif-
ically, we first pick one object class as the root of the graph to con-
vert the graph to a tree T . Each node in T represents an object class,
and has a set of models as candidate (only one candidate model if
the object class is fixed). Then, we define a state as an object class
C and a model m in the class (the state is denoted as (C,m)), and
the energy of the state E(C,m) as the lowest compatibility energy
of the subtree rooted at C in T . We update the energies of all states
in a bottom-up manner: starting with the leaf level of T , the en-
ergy is simply 0 for all states at leaves. Given the energies of the

Figure 7: Interface of style-aware scene builder. The user is al-
lowed to free (in gray) or fix (in orange) any number objects in
the scene, and our system suggests combinations of free objects in
order of style compatibility (at the bottom of the window). When
the user selects any suggestion from the list (red box), the relevant
models are updated in place within the scene.

states of child nodes, we determine the energy of a state at a parent
node (Cp,mp) by picking a modelmc for each child node Cc such
that d(mc,mp) + E(Cc,mc) is minimal. In our experiments with
the living room database, with pre-computed geometric features of
all the models, the suggestion list can update in the interactive rate
(< 60 ms) on 2.3 GHz Intel Core i7.

Evaluation. We conducted a user study to evaluate the utility of
the style-aware scene suggestions in our interactive scene builder
system. We compare two conditions: the scene builder with sug-
gestions ordered by our learned compatibility metric (Ours), and
the same interface with randomly ordered suggestions (Random).

We recruited 12 participants (graduate students) who are not in-
volved in the project and asked them to perform 16 different scene
modeling tasks with the scene builder interface, half using Ours and
half using Random (without being told which was which). We set
up each task by selecting a single reference object to fix and then
randomly generating the rest of the scene. From this starting config-
uration, participants were asked to improve the style compatibility
of the scene while keeping the fixed object. Using the living room
dataset, we generated two tasks per object class by selecting one
“modern” and one “old-fashioned” reference object. In addition to
these 14 tasks, we created 2 additional warm-up tasks whose results
were excluded from our subsequent analyses. The tasks were pre-
sented in the same order for all participants, with the two warm-up
tasks first. Participants were given 3 minutes for each task.

To evaluate the two conditions, we asked AMT workers to compare
the results created using Ours vs. Random. For each scene mod-
eling task, we obtained 6 scenes created using Ours and 6 using
Random, resulting in a total of 504 unique comparisons (14 tasks,
36 comparisons per task). We designed each HIT to include 18 of
these comparisons. For each, we asked workers to indicate which
scene is more stylistically compatible with the option of specify-
ing no preference. As with the furniture suggestion analysis, we
repeated 8 questions and excluded responses with more than 2/8 in-
consistent answers. Each comparison was done by 30 different par-
ticipants. After filtering for consistency, we ended up with 10,322
answers to analyze, which is 47% of all responses.

Overall, we received 5,760 votes that favor the results created us-
ing Ours, and 4,135 votes that favor Random, and 427 “No pref-
erences”. This indicates that participants do have a preference in
most of the cases. If we treat “No preference” as a half vote for
each system, 58% of all the votes favor our system. While the

Style Compatibility for 3D Furniture Models • 85:7

ACM Transactions on Graphics, Vol. 34, No. 4, Article 85, Publication Date: August 2015

Figure 8: Style-aware scene building. Preferences from AMT for the style compatibility of scenes created with our system’s suggestions
versus the alternative. The tasks are ranked by the descending order of the percentages of votes that favor the results creating by using our
system (red bars). We show the initial scene of each task at the bottom, with the fixed object highlighted in cyan. The results of using our
system are preferred in 13 out of 14 tasks, with statistical significance in 8 of them (in red boxes).

numbers may seem to show a relatively small effect, we note that
it is very difficult to demonstrate a significant difference in this ex-
periment, because the suggestions have to be good enough to im-
pact how quickly and effectively people can find compatible objects
with a highly functional interface that allows scrolling through lists,
iterative refinement, undo, etc. Nonetheless, our results are compa-
rable to those obtained in other subjective evaluations for aesthetic
suggestion interfaces [O’Donovan et al. 2014; Garces et al. 2014].

Moreover, if we look at the data for individual tasks (Figure 8),
the results of using our system are preferred in 13 out of 14 tasks,
and there are clearly some tasks where our system appears to have
a larger impact. If we take the null hypothesis that people have
no preference between the scenes created using Ours vs. Random,
Ours is significantly preferred in 8 tasks (with p < 0.05), and the
null hypothesis cannot be rejected in the remaining 6 tasks. There
were no tasks where the Random scenes were significantly pre-
ferred. Note that we used the Binomial Test for significance and
applied Holm-Bonferroni corrections for multiple comparisons.
Based on these results, our system seems to be particularly helpful
when the fixed object is small (e.g., table lamp, end table) and/or of
modern style. This may be because the participants usually had few
cues in these situations, and our system was able to give them some
useful guidance. In general, we expect the impact of our system
to be greatest when the task is challenging and randomly browsing
through the database is unlikely to produce good results.

8 Conclusion

This paper presents a method for computing style compatibility be-
tween 3D furniture models using crowdsourced data and distance
learning technique. The main conclusions are two-fold. First, our
quantitative results show that it is possible to learn a compatibil-
ity metric for furniture of different classes from these triplets, with
greater accuracy using part-aware geometric features and with joint
embeddings of individual object classes. Second, our user stud-
ies show that the learned metric can be used effectively to achieve
higher style compatibility in applications ranging from shape re-
trieval to scene building.

Our system is a first investigation of style compatibility for 3D
models and thus suffers from several limitations. First, it consid-
ers only a simple set of geometric features and thus cannot detect
fine-grained style variations, such as types of ornamentation. Sec-
ond, it considers only geometric properties, and, in future work, it
would be interesting to investigate how materials [Jain et al. 2012],
colors, construction methods, affordances, and other properties of
3D models determine style compatibility. Third, it is targeted only
at furniture within interior environments, whose styles have a rich
history, but perhaps unique properties that do not extend to other

object and scene types. Investigating how the proposed techniques
could be used in systems for modeling avatars, garments, architec-
ture, cities, or other domains where style is important could provide
a fruitful line of research for future study.

Acknowledgments

We acknowledge Trimble and Digimation for providing 3D models,
and Evangelos Kalogerakis for distributing code for computing ge-
ometric features. We thank Adam Finkelstein and Peter O’Donovan
for helpful discussions. Finally, we acknowledge Adobe, Google,
Intel, and the NSF (IIS-1251217) for funding the project.

References

AKAZAWA, Y., OKADA, Y., AND NIIJIMA, K. 2005. Automatic
3d scene generation based on contact constraints. In Proc. Conf.
on Computer Graphics and Artificial Intelligence, 593–598.

BACH, F., JENATTON, R., MAIRAL, J., AND OBOZINSKI, G.
2012. Optimization with sparsity-inducing penalties. Founda-
tions and Trends in Machine Learning 4, 1, 1–106.

CHAUDHURI, S., KALOGERAKIS, E., GUIBAS, L., AND
KOLTUN, V. 2011. Probabilistic reasoning for assembly-based
3d modeling. ACM Trans. Graph. 30, 4, 35.

CHAUDHURI, S., KALOGERAKIS, E., GIGUERE, S., AND
FUNKHOUSER, T. 2013. Attribit: content creation with seman-
tic attributes. In Proc. UIST, ACM, 193–202.

FISHER, M., AND HANRAHAN, P. 2010. Context-based search for
3d models. ACM Trans. Graph. 29, 6, 182.

FISHER, M., SAVVA, M., AND HANRAHAN, P. 2011. Character-
izing structural relationships in scenes using graph kernels. ACM
Trans. Graph. 30, 4, 34.

FISHER, M., RITCHIE, D., SAVVA, M., FUNKHOUSER, T., AND
HANRAHAN, P. 2012. Example-based synthesis of 3d object
arrangements. ACM Trans. Graph. 31, 6, 135.

FUNKHOUSER, T., MIN, P., KAZHDAN, M., CHEN, J., HALDER-
MAN, A., DOBKIN, D., AND JACOBS, D. 2003. A search en-
gine for 3d models. ACM Trans. Graph. 22, 1, 83–105.

GARCES, E., AGARWALA, A., GUTIERREZ, D., AND HERTZ-
MANN, A. 2014. A similarity measure for illustration style.
ACM Trans. Graph. 33, 4, 93.

85:8 • T. Liu et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 85, Publication Date: August 2015

GOLDBERGER, J., ROWEIS, S., HINTON, G., AND SALAKHUT-
DINOV, R. 2004. Neighbourhood components analysis. Ad-
vances in Neural Information Processing Systems.

HOTELLING, H. 1936. Relations between two sets of variates.
Biometrika 28, 3-4, 321–377.

HUANG, Q.-X., SU, H., AND GUIBAS, L. 2013. Fine-grained
semi-supervised labeling of large shape collections. ACM
Trans. Graph. 32, 6, 190.

JAIN, A., THORMÄHLEN, T., RITSCHEL, T., AND SEIDEL, H.-P.
2012. Material memex: Automatic material suggestions for 3d
objects. ACM Trans. Graph. 31, 5, 143.

KALOGERAKIS, E., CHAUDHURI, S., KOLLER, D., AND
KOLTUN, V. 2012. A probabilistic model for component-based
shape synthesis. ACM Trans. Graph. 31, 4, 55.

KAZHDAN, M., CHAZELLE, B., DOBKIN, D., FUNKHOUSER, T.,
AND RUSINKIEWICZ, S. 2004. A reflective symmetry descriptor
for 3d models. Algorithmica 38, 1, 201–225.

KIM, V. G., LI, W., MITRA, N. J., CHAUDHURI, S., DIVERDI,
S., AND FUNKHOUSER, T. 2013. Learning part-based templates
from large collections of 3d shapes. ACM Trans. Graph. 32, 4,
70.

KULIS, B. 2012. Metric learning: A survey. Foundations & Trends
in Machine Learning 5, 4, 287–364.

LI, H., ZHANG, H., WANG, Y., CAO, J., SHAMIR, A., AND
COHEN-OR, D. 2013. Curve style analysis in a set of shapes.
Computer Graphics Forum 32, 6, 77–88.

LUN, Z., KALOGERAKIS, E., AND SHEFFER, A. 2015. Elements
of style: Learning structure-transcending perceptual shape style
similarity. ACM Trans. Graph. 34, 4.

MA, C., HUANG, H., SHEFFER, A., KALOGERAKIS, E., AND
WANG, R. 2014. Analogy-driven 3D style transfer. Computer
Graphics Forum 33, 2, 175–184.

MERRELL, P., SCHKUFZA, E., LI, Z., AGRAWALA, M., AND
KOLTUN, V. 2011. Interactive furniture layout using interior
design guidelines. ACM Trans. Graph. 30, 4, 87.

MERRIAM-WEBSTER. 2004. Merriam-Webster Dictionary.
Merriam-Webster Mass Market, July.

MILLER, J. 2005. Furniture. Penguin.

O’DONOVAN, P., L ĪBEKS, J., AGARWALA, A., AND HERTZ-
MANN, A. 2014. Exploratory font selection using crowdsourced
attributes. ACM Trans. Graph. 33, 4, 92.

PARIKH, D., AND GRAUMAN, K. 2011. Relative attributes. In
Proc. ICCV, 503–510.

SHAPIRA, L., SHALOM, S., SHAMIR, A., COHEN-OR, D., AND
ZHANG, H. 2010. Contextual part analogies in 3d objects. In-
ternational Journal of Computer Vision 89, 2-3, 309–326.

TANGELDER, J. W., AND VELTKAMP, R. C. 2008. A survey of
content based 3d shape retrieval methods. Multimedia tools and
applications 39, 3, 441–471.

UMETANI, N., IGARASHI, T., AND MITRA, N. J. 2012. Guided
exploration of physically valid shapes for furniture design. ACM
Trans. Graph. 31, 4, 86.

WILBER, M. J., KWAK, I. S., AND BELONGIE, S. J. 2014.
Cost-effective hits for relative similarity comparisons. In
Proc. HCOMP.

XU, K., LI, H., ZHANG, H., COHEN-OR, D., XIONG, Y., AND
CHENG, Z.-Q. 2010. Style-content separation by anisotropic
part scales. ACM Trans. Graph. 29, 6, 184.

YU, L.-F., YEUNG, S. K., TANG, C.-K., TERZOPOULOS, D.,
CHAN, T. F., AND OSHER, S. 2011. Make it home: automatic
optimization of furniture arrangement. ACM Trans. Graph. 30,
4, 86.

ZHENG, Y., COHEN-OR, D., AND MITRA, N. J. 2013. Smart
variations: Functional substructures for part compatibility. Com-
puter Graphics Forum 32, 2pt2, 195–204.

ZHU, C., BYRD, R. H., LU, P., AND NOCEDAL, J. 1997. Algo-
rithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-
constrained optimization. ACM TOMS 23, 4, 550–560.

Style Compatibility for 3D Furniture Models • 85:9

ACM Transactions on Graphics, Vol. 34, No. 4, Article 85, Publication Date: August 2015

