
mjb – September 26, 2023
Computer Graphics

1

Sines and Cosines for Animating Computer Graphics

Mike Bailey

mjb@cs.oregonstate.edu

SinesAndCosines.pptx

mjb – September 26, 2023
Computer Graphics

2
You Know about Sines and Cosines from Math, but They are Very

Useful for Animating Computer Graphics

First, We Need to Understand Something about Angles:

θ

If a circle has a radius of 1.0, then we can march around it by simply
changing the angle that we call θ.

mjb – September 26, 2023
Computer Graphics

3
First, We Need to Understand Something about Angles

θ

X

θ

Y

One of the things we notice is that each angle θ has a unique X
and Y that goes with it.

These are different for each θ.

mjb – September 26, 2023
Computer Graphics

4
First, We Need to Understand Something about Angles

θ

X

θ

Y

Fortunately, centuries ago, people developed tables of
those X and Y values as functions of θ.

They called the X values cosines and the Y values sines.
These are abbreviated cos and sin.

=X
=Y

mjb – September 26, 2023
Computer Graphics

5How People used to Lookup Sines and Cosines – Yuch!
Fortunately We Now Have Calculators and Computers

Book of sines and cosines

Slide rule

mjb – September 26, 2023
Computer Graphics

6
First, We Need to Understand Something about Angles

θ

X

θ

Y

If we were to double the radius of the circle, all of
the X’s and Y’s would also double.

So, really the cos and sin are ratios of X and Y to
the circle Radius

mjb – September 26, 2023
Computer Graphics

7
First, We Need to Understand Something about Angles

θ

X

θ

Y

So, if we know the circle Radius, and we
march through a bunch of θ angles, we can
determine all of the X’s and Y’s that we
need to draw a circle.

Draw to this point

mjb – September 26, 2023
Computer Graphics

8

void
Circle(float xc, float yc, float r, int numsegs)
{

float dang = 2.f * F_PI / (float)numsegs;
float ang = 0.;
glBegin(GL_TRIANGLE_FAN);
glVertex3f(xc, yc, 0.);

for(int i = 0; i <= numsegs; i++)
{

float x = xc + r * cosf(ang);
float y = yc + r * sinf(ang);
glVertex3f(x, y, 0.);
ang += dang;

}

glEnd();
}

Thus, We Could Create Our Very Own Circle-Drawing Function

numsegs is the number of line segments
making up the circumference of the circle.

numsegs=20 gives a nice circle.

5 gives a pentagon.
8 gives an octagon.
4 gives you a square. Etc.

2π is how many radians are in a full circle

Circle center Circle radius

The C/C++ sin() and cos() functions use
double-precision floating point.

The C/C++ sinf() and cosf() functions use
single-precision floating point, and are faster.

mjb – September 26, 2023
Computer Graphics

9

float dang = 2.f*F_PI / (float)numsegs;

Why 2.*PI ?

We humans commonly measure angles in degrees, but science and computers like
to measure them in something else called radians.

There are 360° in a complete circle.
There are 2π radians in a complete circle.

The built-in cosf() and sinf() functions expect angles to be given in radians.

To convert between the two:
float rad = deg * (F_PI/180.f);
float deg = rad * (180.f/F_PI);

glRotatef() and gluPerspective() are the only two programming
functions I can think of that use degrees. All others use radians!

mjb – September 26, 2023
Computer Graphics

10
Circles and Pentagons and Octagons, Oh My!

glColor3f(1., 0., 0.);
Circle(1.f, 3.f, 1.f, 20)

glColor3f(0., 1., 0.);
Circle(2.f, 2.f, 1.f, 5)

glColor3f(0., 0., 1.);
Circle(3.f, 1.f, 1.f, 8)

mjb – September 26, 2023
Computer Graphics

11

The math.h include file has a definition of that looks like this:

#define M_PI 3.14159265358979323846

Which will work just fine for whatever you need it for.

But, Visual Studio goes a little crazy complaining about mixing doubles (which is what
M_PI is in) and floats (which is probably what you use most often). So, your sample
code has these lines in it:

#define F_PI ((float)(M_PI))
#define F_2_PI ((float)(2.f*F_PI))
#define F_PI_2 ((float)(F_PI/2.f))

I use the F_ version a lot because it keeps VS quiet. You can use either.

Easy as :
M_PI vs. F_PI

π
2π
π/2

mjb – September 26, 2023
Computer Graphics

12

void
Ellipse(float xc, float yc, float rx, float ry, int numsegs)
{

float dang = 2.f * F_PI / (float)numsegs;
float ang = 0.;
glBegin(GL_TRIANGLE_FAN);
glVertex3f(xc, yc, 0.);

for(int i = 0; i <= numsegs; i++)
{

float x = xc + rx * cosf(ang);
float y = yc + ry * sinf(ang);
glVertex3f(x, y, 0.);
ang += dang;

}

glEnd();
}

And, there is no reason the X and Y radii need to be the same…

mjb – September 26, 2023
Computer Graphics

13

There is also no reason we can’t gradually change the radius …

void
Spiral(float xc, float yc, float r0, float r1, int numsegs, int numturns)
{

float dang = (float)numturns * 2.f * F_PI / (float)numsegs;
float ang = 0.;
glBegin(GL_LINE_STRIP);

for(int i = 0; i <= numsegs; i++)
{

float t = (float)i / (float)numsegs; // 0.-1.
float newrad = (1.-t)*r0 + t*r1;

// linearly interpolate from r0 to r1
float x = xc + newrad * cosf(ang);
float y = yc + newrad * sinf(ang);
glVertex3f(x, y, 0.);
ang += dang;

}

glEnd();
}

mjb – September 26, 2023
Computer Graphics

14
Parametric Linear Interpolation (Blending)

float t = (float)i / (float)numsegs; // 0.-1.
float newrad = (1.-t)*r0 + t*r1;

What's this code all about?

In computer graphics, we do a lot of linear interpolation between two
input values. Here is a good way to do that:

1. Setup a float variable, t, such that it ranges from 0. to 1.
The line float t = (float)i / (float)numsegs; does this.

2. Step through as many t values as you want interpolation steps.
The line for(int i = 0; i <= numsegs; i++) does this.

3. For each t, multiply one input value by (1.-t) and multiply the other input
value by t and add them together.
The line float newrad = (1.-t)*r0 + t*r1; does this.

mjb – September 26, 2023
Computer Graphics

15We Can Also Use This Same Idea to Arrange Things in a Circle
and Linearly Blend Their Colors

int numObjects = 9;
float radius = 2.f;
float xc = 3.f;
float yc = 3.f;
int numSegs = 20;
float r = 50.f;
float dang = 2.f*F_PI / (float) (numObjects - 1);
float ang = 0.;
for(int i = 0; i < numObjects; i++)
{

float x = xc + radius * cosf(ang);
float y = yc + radius * sinf(ang);
float t = (float)i / (float)(numObjects-1); // 0.-1.
float red = t; // ramp up
float blue = 1.f - t; // ramp down
glColor3f red, 0., blue);
Circle(x, y, r, numSegs);
ang += dang;

}

mjb – September 26, 2023
Computer Graphics

16

float Time; // global variable intended to lie between [0.,1.)

. . .

const int MS_PER_CYCLE = 10000; // 10000 milliseconds = 10 seconds

. . .

// in Animate():
int ms = glutGet(GLUT_ELAPSED_TIME);
ms %= MS_PER_CYCLE;

// makes the value of ms between 0 and MS_PER_CYCLE-1
Time = (float)ms / (float)MS_PER_CYCLE;

// makes the value of Time between 0. and slightly less than 1.

By Understanding what the Sine Function Looks Like,
We Can Also Use it to Control Animations Based on Time

In your sample.cpp file, we have some code that looks like this:

mjb – September 26, 2023
Computer Graphics

17
By Understanding what the Sine Function Looks Like,

We Can Also Use it to Control Animations Based on Time

The sine function goes from -1. to +1., and does it very smoothly

y=sin(2.

mjb – September 26, 2023
Computer Graphics

18
By Understanding what the Sine Function Looks Like,

We Can Also Use it to Control Animations Based on Time

Sine function Linear function

Linear function tries to
produce infinite acceleration
at these two locations

Time

Sine functions produce a smoother set of motions than linear functions do
(that's why we use them):

mjb – September 26, 2023
Computer Graphics

19

sin(2. 2.*sin(2. sin(2.*(2.

Increasing the Amplitude, Increasing the Frequency

Time

mjb – September 26, 2023
Computer Graphics

20

A*sin(F*(2.

Changing this number
changes the Amplitude

Changing this number
changes the Frequency

Increasing the Amplitude, Increasing the Frequency

mjb – September 26, 2023
Computer Graphics

21
Oscillating Motion

// in Display():
float x = X*sin(F*(2.
. . .
glTranslatef(x, 0., 0.);
glCallList(BlockList);

Let’s say you want a block to oscillate back and forth in x:

This code would cause it to do that:

+X-X

x

mjb – September 26, 2023
Computer Graphics

22
Rocking Motion

// in Display():
float theta = 45.f sin(F (2.
. . .
glRotatef(theta, 0., 0., 1.);
glCallList(BlockList);

Let’s say you want a block to rock back and forth:

This code would cause it to do that:

θ

