FGL/Haskell — A Functional Graph Library
User Guide

Martin Erwig
FernUniversitat Hagen, Praktische Informatik IV
58084 Hagen, Germany
erwig@fernuni-hagen.de

April 12, 2000

CONTENTS

Contents

Contents

1

2

Introduction

Inductive Graphs

2.1 Graph Types o e e e e e e
2.2 Constructing Graphs o L
2.3 Extracting Graph Information. oL 0oL
2.4 Graph Decomposition L e

3 Basic Graph Operations and Their Implementation
3.1 General-Purpose Operations
3.2 Implementation of Graph Operations

4 Depth First Search

5 Breadth-First Search

6 Shortest Paths

7 Graph Voronoi Diagram

8 Minimum Spanning Tree

9 Maximum Independent Node Sets

References

Appendix A: Implementation Aspects

Appendix B: Further Reading

Index

12

15

17

17

18

19

20

22

25

27

2 1 INTRODUCTION

1 Introduction

The Functional Graph Library, FGL, is a collection of type and function definitions to address
graph problems. FGL presents an approach to the formulation of graph algorithms that
differs significantly from the traditional, imperative way of thinking about and solving graph
problems: the basis of the library is an inductive definition of graphs in the style of algebraic
data types that encourages inductive, recursive definitions of graph algorithms instead of the
traditional node marking style. In addition, the library contains functions for well-known
graph problems, such as, depth-first search or computing shortest paths. At present, the
library is far from being complete, but we intend to expand it.

FGL is devoted in the first place to enable a concise and clear formulation of graph prob-
lems. This means that you should not always expect the most efficient implementations of
graph algorithms. Nevertheless, the complexity of functions is an important issue, and algo-
rithms based on the inductive graph view can be, in principle, as efficient as corresponding
imperative algorithms. Users most concerned about efficiency should consult Appendix A.

This User Guide aims at providing a novice user quickly with the most important in-
formations to get an impression of FGL and learn how to use the library. We assume
familiarity with Haskell and knowledge of basic graph terminology. We will occasionally use
functions defined in the 1998 Standard of Haskell [20], otherwise this User Guide should be
self-contained. The document is divided into two main parts. The first two sections provide
basic information about inductive graphs and how to write recursive graph algorithms:

e In Section 2 we explain the inductive definition of graphs that underlies all algorithms
in FGL, and we describe elementary functions to build and to inspect graphs.

e In Section 3 we introduce some general-purpose graph operations and demonstrate the
distinctive programming style of inductive graphs by discussing their implementation.

The next group of sections describes several graph algorithms and applications. These serve
two purposes: first, they can be used as a reference to functions needed for particular prob-
lems, and second, they provide programming examples in FGL that help the user to better
understand the concept of inductive graphs and to apply it to new problems.

e Section 4: Several versions of depth-first search and also derived operations, such as
topological sorting and strongly connected components.

e Section 5: Breadth-first search and shortest paths (measured in number of edges).
e Section 6: Shortest paths (with respect to edge labels), here: Dijkstra’s algorithm.

e Section 7: Operations to construct and query graph Voronoi Diagrams. An application
is, for example, locating nearest facilities.

e Section 8: Minimum spanning trees, here: Prim’s algorithm.

e Section 9: Maximum independent node sets.

Finally, in Appendix A we discuss the implementation of the graph type, and in Appendix
B we provide some bibliographic background.

2 Inductive Graphs

The following definitions are contained in the module Graph. We describe the FGL graph Graph.hs
types and their operations in several steps: Section 2.1 introduces the basic types. In Section

2.2 we demonstrate how graphs can be constructed, whereas in Section 2.3 we show functions

to access information stored in a graph. Finally, Section 2.4 is describes elementary functions

that enable the inductive decomposition of graphs.

2.1 Graph Types

We define one type for directed node- and edge-labeled multi-graphs. This type captures the
most general class of graphs. However, other graph types can be obtained as special cases:
for example, undirected graphs can be well simulated by directed graphs having a symmetric
edge structure, where we say that a directed graph g properly represents an undirected graph
if for each edge (v,w,1) (that is, for each edge from node v to node w with label 1) in g
there is also an edge (w,v,1) in g. Moreover, unlabeled graphs simply have the node and/or
edge label type () (unit/trivial type).

Plain nodes are represented by integers, and a plain edge is given by a pair of nodes. In
the following we use the convention to denote the type of node labels by the type variable a
and the type of edge labels by the type variable b. In addition to the types for plain nodes
and edges (Node and Edge) and labeled nodes and edges (LNode and LEdge), we also include
for convenience types UNode and UEdge for “quasi”’-unlabeled nodes and edges, that is, nodes
and edges which are labeled with the unit value () of type (). Finally, we call lists of nodes
also paths.

type Node = Int

type LNode a = (Node,a)

type UNode = LNode ()

type Edge = (Node,Node)
type LEdge b = (Node,Node,b)
type UEdge = LEdge ()

type Graph a b = -- abstract type
type UGraph = Graph () ()
type Path = [Nodel

type LPath a = [LNode al
type UPath = [UNode]

The inductive view of graphs is captured in the following description: a graph is either the
empty graph (that contains no nodes) or a graph extended by a new node v together with
its label and with edges to v’s successors and predecessors. Each edge information contains
the successor/predecessor node itself and the label of the edge. This information about
a one-step inductive graph extension is gathered in an own type Context, which is called
contert because the new node is brought into some context of the existing graph. A list
of (successor or predecessor) nodes paired with corresponding edge labels is also called an

GraphData.hs

4 2 INDUCTIVE GRAPHS

adjacency. Contexts are not only used to build graphs, they are, in particular, employed when
decomposing graphs. Since decomposition can fail for several reasons, the corresponding
functions and their types have to account for this. Therefore, we have a type abbreviation
for Maybe-contexts and also a type Decomp capturing the complete result of a decomposition:
a pair of a possible context and a remaining graph. We also include type GDecomp for
“guaranteed” decompositions, that is, decompositions that are expected to always have a
context. Moreover, it is convenient to have variants of some of these types for unlabeled
graphs. (The details will explained in Section 2.4. We just wanted to include the type
definition in this section for easier later reference.)

[(b,Node)]

(Adj b,Node,a,Adj b)
Maybe (Context a b)
(MContext a b,Graph a b)
(Context a b,Graph a b)

type Adj b
type Context a b

type MContext a b

type Decomp a b

type GDecomp a b

([Node] ,Node, [Node])
(Maybe UContext,UGraph)

type UContext

type UDecomp

2.2 Constructing Graphs

We have two basic functions to build up graphs inductively: the function empty denotes the
empty graph, and the function embed extends a graph by a context:

empty :: Graph a b
embed :: Context a b -> Graph a b -> Graph a b

It is an error to try to insert a node that is already contained in the graph or to refer in
predecessor or successor lists to nodes that are not contained in the graph to be extended.
We have also included versions of these two functions for unlabeled graphs:

emptyU :: UGraph
embedU :: UContext -> UGraph -> UGraph

Sometimes it is convenient to use embed in infix notation. We have therefore also included
the following function definition:

infixr &
c& g = embed c g

With the two functions empty and embed/& we are able denote graphs by terms. Let us
begin by giving terms for several very simply graphs. These definitions can also be found in
the module GraphData. We are constructing graphs of type Graph Char (), that is, nodes
are labeled by characters and edges are not labeled (that is, they are all labeled by the null
value () of the unit or trivial type).

a = (0,1,’a’,[0::[(O,Node)]) & empty -- just a node

loop = ([1,1,’a’,[(O,1)]) & empty -- loop on single node

e = ([(O,1]1,2,’b’,[1) & a -- just one edge a-->b

ab = ([(O,D]1,2,°p’,[(O,1D]) & a -- cycle of two nodes a<-->b

2.2 Constructing Graphs 5

l
up down down cft

10 @

Figure 1: Directed graph with two inductive constructions.

To have a textual representation of graphs, we have defined the show function for graphs to
print the adjacency list representation. This means that a graph is shown as a list of labeled
nodes, each followed by the list of labeled outgoing edges. For example, the above graphs
are printed as follows:

GraphData> a
1:7a->[]

GraphData> loop
1:7a’->[(0,1)]

GraphData> e
1:7a’->[(0,2)]
2:°b?->[]

GraphData> ab
1:7a’->[(0,2)]
2:°’->[(0,1)]

For a slightly larger example, consider the graph shown (on the left) in Figure 1.
We can build this graph of type Graph Char String, for example, with the following
expression (see Figure 1, picture in the middle):

g3 = &
(1,2,’v’,[("down",3)]) &
([1,3,’¢c’,[1) & empty

The chosen order of inserting node contexts is not the only possible one. For example, we
can also reverse the order. Then, however, the contexts have to be changed accordingly since
we can refer in predecessor and successor lists only to nodes that are present in the graph
to be extended. Note that consistency checks for graph construction are integrated into the
definition of embed (and &). In fact, an error is reported when a context is added for a node
that is already present in the graph or when a node mentioned in the successor or predecessor
list is missing in the graph. Now the alternative construction of the graph is (see Figure 1,
picture on the right):

g3’ = &
([("right",1)],2,’b’,[("1left",1)]) &
(a,1,’a’,[D & empty

Graph.hs

6 2 INDUCTIVE GRAPHS

Again, this is only one further example, and, in fact, we can choose an arbitrary order of
node insertion for building a graph. The textual representation of the graph g3 (or g3°) is:

GraphData> g3
1:’a’->[("right",2)]
2:°b?->[("1left",1), ("down",3)]
3: ,c7_>[("upll’1)]

In the module Graph, there are several additional functions defined that make the graph
construction more convenient: the functions insNode and insNodes can be used to just
insert one or more labeled nodes into a graph. The function newNodes can be helpful in
cases a graph has to be extended whose construction is not known, that is, it is not clear
which nodes are contained in it. Then the function newNodes can be used to get a sequence
of nodes that are not contained in a graph. The functions insEdge and insEdges can be
used to extend a graph by one or more labeled edges, and finally, the functions mkGraph and
mkUGraph are very useful in building graphs in the traditional way, that is, by simply giving
a list of nodes end edges. This, in particular, saves from inventing a sequence of contexts to
denote a graph.

insNode :: LNode a -> Graph a b -> Graph a b
insNodes :: [LNode a] -> Graph a b -> Graph a b
insEdge :: LEdge b -> Graph a b -> Graph a b
insEdges :: [LEdge b] -> Graph a b -> Graph a b
newNodes :: Int -> Graph a b -> [Node]

mkGraph :: [LNode a] -> [LEdge bl -> Graph a b

mkUGraph :: [Nodel -> [Edge] -> UGraph

Several examples for the use of these functions can be found in the module GraphData. The
functions mkGraph and mkUGraph can be useful in directly constructing graphs as well as in
functions constructing specific graphs, such as ucycle, which constructs a cycle of specified
length, and star, which builds a star-shaped graph:

ucycle :: Int -> UGraph
ucycle n = mkUGraph vs (map (\v->(v,v ‘mod‘ n+1)) vs)
where vs = [1..n]

star :: Int -> UGraph
star n = mkUGraph [1..n] (map (\v->(1,v)) [2..n])

2.3 Extracting Graph Information

Now that we can build graphs, we next describe how to extract information from graphs.
In this subsection we present some elementary graph access operations, whereas in the next
subsection we introduce functions for a systematic graph exploration.

First, we have operations that deliver global information about a graph. For example,
we can test with the function isEmpty whether a graph is empty or not. Moreover, we can
count the number of nodes in a graph with noNodes, and we can extract the list of plain and
labeled nodes from a graph with the functions nodes and 1abNodes. Similarly, the functions
edges and labEdges compute the list of plain and labeled edges of a graph.

2.4 Graph Decomposition 7

isEmpty :: Graph a b -> Bool
noNodes :: Graph a b -> Int
nodes :: Graph a b -> [Node]
labNodes :: Graph a b -> [LNode a]
edges :: Graph a b -> [Edgel
labEdges :: Graph a b -> [LEdge b]

Second, we can extract information about individual nodes: for a graph g that contains a node
v, we can determine v’s successors (suc), predecessors (pre), or all neighbors (neighbors),
the outgoing (out) or incoming edges (inn), and its different kinds of degrees (outdeg, indeg,
and deg).

suc :: Graph a b -> Node -> [Node]
pre :: Graph a b -> Node -> [Node]
neighbors :: Graph a b -> Node -> [Nodel
out :: Graph a b -> Node -> [LEdge bl
inn :: Graph a b -> Node -> [LEdge bl
outdeg :: Graph a b -> Node -> Int
indeg :: Graph a b -> Node -> Int

deg :: Graph a b -> Node -> Int

Especially in graph traversals one frequently needs to access the information provided by the
above functions for a particular, that is, already given, context. Therefore, we also provide
the corresponding functions defined on contexts. In addition, we can extract the node and
its label (or both) from a context.

suc’ :: Context a b —> [Node]
pre’ :: Context a b -> [Node]
neighbors’ :: Context a b -> [Node]
out’ :: Context a b -> [LEdge b]
inn’ :: Context a b -> [LEdge b]
outdeg’ :: Context a b -> Int
indeg’ :: Context a b -> Int

deg’ :: Context a b -> Int

node’ :: Context a b -> Node

lab’ :: Context a b -> a
labNode’ :: Context a b -> LNode a

2.4 Graph Decomposition

The fundamental operation for decomposing inductive graphs is given by the function match
that tries to locate a node v in a graph g, and yields v’s context, that is, its predecessors,
its successors, and its label, and the remaining graph, that is, g without v and its incident
edges. If v is not contained in g, no context is returned (represented by the constructor
Nothing), and the returned graph is g itself.

match :: Node -> Graph a b -> Decomp a b

8 2 INDUCTIVE GRAPHS

One can regard match as the (deterministic) inverse of embed. Again we have a special
version for unlabeled graphs:

matchU :: Node -> UGraph -> UDecomp
Let us show some examples illustrating the meaning of match.

GraphData> match 1 a
QJust ([1,1,’a’,[D),) -- remaining graph is empty

GraphData> match 1 loop
(Just ([1,1,’2’,[CO,DD),) -- remaining graph is empty

GraphData> match 1 ab
(Just ([(O,2)],1,7a’,[(0O,2)]D),
2:°b?->[1)

GraphData> match 1 e
(Just ([1,1,’a’,0(0,2)1),
2:°b?->[1)

GraphData> match 1 g3

(Just ([("left",2),("up",3)]1,1,%a’,[("right",2)]),
2:’b’->[("down",3)]

3:7c’->[1)

GraphData> match 2 a
(Nothing,
1:7a’->[1)

Look at the result of match 1 loop. We observe that the loop on node 1 was interpreted
by match as an outgoing edge because in the resulting context the node 1 appears in the
successor list. This is an arbitrary decision in the implementations of match, that is, we could
as well have put loops in the predecessor list. However, we believe it would be an error to
put loops into both lists at the same time because this would somewhat illegally augment the
information obtained from the graph. This can be seen as follows: suppose match delivered
loops in the successor and the predecessor lists. Then match 1 a would yield (Just c,g)
as a result where g is the empty graph and c is the context

([CO,1,1,’a?,[(0O,1)]) -- match loops in pre and suc list

Now, re-applying embed, that is, the expression ¢ & g, does not yield the original graph a,
but a graph with two loops on the node 1:

1:722->[(0,1),(0,1)] —cé&g

On the other hand with the chosen definition for match, we have the following nice property:
match v g= (Just c,g’) = c &g’ =g

Since some applications might prefer loops delivered in predecessor lists, we also include a
function matchP that does exactly this and behaves otherwise like match. In addition, there
are also functions to match an arbitrary node or nodes with a specific property: matchAny
matches an arbitrary node in a non-empty graph. Applied to an empty graph, matchAny
produces an error. matchAny can be viewed as the non-deterministic inverse of embed, and
it has the following property:

isEmpty g =False = uncurry embed (matchAny g) =g

Similarly, matchSome matches an arbitrary node that fulfills a condition. Again it is an error
to apply matchSome to an empty graph, and an error is also produced when no node satisfies
the given condition. Finally, matchThe matches a unique node of a certain property, that
is, it matches whenever matchSome would match and the list of qualifying nodes contains
exactly one node. We also have two functions context and contextP that match a context
in a graph much like match and matchP, but return only the context and not the remaining
graph. Dually, we also have a functions delNode and delNodes matches one or more nodes
in the graph and ignore the resulting contexts and just yield the remaining graph. This
amounts, in fact, to remove nodes from a graph. For completeness we also have included
the corresponding functions delEdge and delEdges for removing one or more edges from a
graph.

matchP :: Node -> Graph a b -> Decomp a b

matchAny :: Graph a b -> GDecomp a b

matchSome :: (Graph a b -> Node -> Bool) -> Graph a b -> GDecomp a b
matchThe :: (Graph a b -> Node -> Bool) -> Graph a b -> GDecomp a b
context :: Node -> Graph a b -> Context a b

contextP :: Node -> Graph a b -> Context a b

delNode :: Node -> Graph a b -> Graph a b

delNodes :: [Node]l -> Graph a b -> Graph a b

delEdge :: Edge -> Graph a b -> Graph a b

delEdges :: [Edge]l -> Graph a b -> Graph a b

3 Basic Graph Operations and Their Implementation

In this Section we demonstrate the use of graph decomposition functions in the realization
of some basic graph algorithms. The functions defined in the following are included in the
module Basic. We start in Section 3.1 by briefly describing a set of basic graph operations
that can be used for many everyday’s tasks on graphs. In Section 3.2 we describe the
implementation of these operators. This helps to understand the operations better and
serves at the same time as a little tutorial on how to write recursive graph functions.

Basic.hs

10 3 BASIC GRAPH OPERATIONS AND THEIR IMPLEMENTATION

3.1 General-Purpose Operations

The function gmap applies a function to all contexts of a graph; two specialized versions of
gmap are the functions nmap and emap that map functions to node and edge labels. The
function grev performs graph reversal, that is, grev swaps the direction of all edges in the
graph. The function undir converts a directed graph into an undirected graph, that is,
it adds edges to the graph so that it properly represents (see beginning of Section 2.1) an
undirected graph. The function unlab forgets all labels of a graph and thereby converts it
into an unlabeled graph, and gsel selects a list of contexts that satisfy a given property.

gmap :: (Context a b -> Context ¢ d) -> Graph a b -> Graph c d
nmap :: (a -> ¢) -> Graph a b -> Graph c b

emap :: (b -> ¢) -> Graph a b -> Graph a c

grev :: Graph a b -> Graph a b

undir :: Graph a b -> Graph a b
unlab :: Graph a b -> UGraph
gsel :: (Context a b -> Bool) -> Graph a b -> [Context a b]

In addition to these specific function we have also two very general fold operations on graphs:
ufold successively decomposes all contexts from a graph and combines them in a right-
associative way with a binary function of type (Context a b) -> ¢ -> ¢ and a unit value
of type ¢ into one value of type c. ufold is very similar to the well-known list fold, but
an important difference is that the contexts are decomposed from the graph in an arbitrary
order; therefore the “u” in the name that stands for unordered.

ufold :: ((Context a b) -> ¢ -> ¢c) -> ¢ -> Graph a b -> ¢

The second fold function, gfold, decomposes graphs in a specific order. In particular, con-
texts are decomposed at specific positions, that is, nodes, in the graph. It takes essentially
three function parameters to control the decomposition.

type Dir a b = (Context a b) -> [Node] -- direction of fold
type Dagg a b c d = (Context a b) -> ¢ -> d -- depth aggregation
(Maybe d -> ¢ -> c¢,c) -- breadth/level aggregation

type Bagg d c

gfold :: (Dir a b) -> (Dagg a b ¢ d) -> (Bagg d c) -> [Node] -> Graph a b -> c

Assume we have explored a graph to some part, that is, we are currently visiting a context ¢
= (p,v,1,s), and we have to explore the remaining graph g. Then gfold works as follows:

e The first function, say f, of type (Context a b) -> [Node] is applied to ¢ and yields
a list of nodes that are to be visited next. A typical example is the function suc’ that
yields the successors s; this specifies a depth-first traversal.

e The graph g is folded recursively at those nodes delivered by f. This yields a list of
results rs which will be aggregated by the third parameter into a value x of type c.
Now the second parameter function combines the current context and x into a value y
of type d. Since values computed on deeper levels are combined with the current level,
this process is also called depth aggregation.

3.2 Implementation of Graph Operations 11

e Each element of the list rs is a Maybe d-value resulting from the recursive graph fold
of a node delivered by f: when the matching of the node is successful, it will be a value
Just y, otherwise it will be the value Nothing. Now rs is list-folded by a function g
and a unit value u (of type c) into a value of type c. Since values computed on the
same level are combined, we call this process also breadth aggregation. Note that the
third parameter is given by the pair (g,u).

On the top level, gfold is applied to a list of nodes and yields a list of Maybe d-values. These
are finally breadth-aggregated into a single value of type c.

As an example for the application of gfo1ld consider the computation of a depth-first span-
ning tree. The direction of gfold is given by suc’, and the depth aggregation is Br . node’
which selects the node of the current context and puts it at the root of a tree that has the
recursively computed trees as subtrees. (The constructor Br is explained below in Section
4.) The breadth aggregation is given by the pair (catMaybes, [1):

dff :: [Node]l -> Graph a b -> [Tree Node]
dff = gfold suc’ (Br . node’) (catMaybes,[])

3.2 Implementation of Graph Operations

In this section we discuss the implementation of some operations introduced above. We begin
with the definition of gmap: if the graph is empty, the empty graph is the result, otherwise,
we retrieve a context, apply f to it and embed the new context into the result of mapping
f to the remaining graph. Note that by using matchAny to retrieve a context the order of
encountering the contexts is arbitrary.

gmap :: (Context a b -> Context ¢ b) -> Graph a b -> Graph c b
gmap f g | isEmpty g = empty

| otherwise = f c & gmap f g’

where (c,g’) = matchAny g

An example for the application of gmap is setting all node labels to a character that corre-
sponds to the node value:

gmap (\(p,v,_,s)->(p,v,chr(96+v),s))

Another example for a simple recursive graph function is the definition of grev. The structure
of this definition is very similar to that of gmap: in the base case we return the empty graph,
and if there is a context available, we swap successors and predecessors and embed this
changed context in the reversal of the remaining graph. Again the chosen order of context
decomposition does not matter.

grev :: Graph a b -> Graph a b

grev g | isEmpty g = empty
| otherwise = (s,v,1,p) & grev g’
where ((p,v,1,s),g’) = matchAny g

It is not difficult to see that grev can, in fact, be expressed as an instance of gmap:

12 4 DEPTH FIRST SEARCH

grev = gmap (\(p,v,1,s)->(s,v,1,p))

Even gmap can be generalized; we can define it as an instance of ufold. Moreover, the
functions gsel, nodes, undir and unlab can also be realized through ufold and gmap.

gmap £ = ufold (\c->(f c&)) empty
gsel p = ufold (\c cs->if p c then c:cs else cs) []
nodes = ufold (\(p,v,1l,s)->(v:)) []
undir = gmap (\(p,v,1l,s)->let ps=nubBy (\x y->snd x==snd y) (p++s) in (ps,v,1,ps))
unlab = gmap (\(p,v,_,s)->(unlabAdj p,v,(),unlabAdj s))
where unlabAdj = map (\(_,v)->((),v))

4 Depth First Search

Depth-first search is one of the most basic and most important graph algorithms. It can

reveal a lot about the internal structure of a graph, and this information can be used to

implement several other algorithms, such as topological sorting or computing strongly con-

DFS.hs nected components. The functions presented in this Section can be found in the module DFS.
RoseTree.hs The definition of the tree data type is given in the module RoseTree.

A depth-first walk through a graph essentially means to visit each node in the graph once
by visiting successors before siblings. The parameters of depth-first search are, of course, the
graph to be searched, but in addition, a list of nodes is used saying which nodes are left to be
visited. This list is needed for unconnected graphs where, after having completely explored
one component, a node of another component is needed to continue the search. Depth-first
search can deliver different kinds of results: the function dfs yields the list of nodes in the
order visited (this list said to be in depth-first order). In contrast, the function dff computes
a depth-first spanning tree, which keeps the edges that have been traversed to reach all the
nodes. In fact, the result might not be a proper tree at all, which is the case when the graph
is not connected. Therefore, dff actually delivers a list of trees, which is also called a forest
(this also explains the use of a trailing f instead of a t in the name of the function).

The data type Tree and functions for computing pre- and postorder list of nodes are
defined in the module RoseTree:

data Tree a = Br a [Tree a]

preorder :: Tree a -> [a]
postorder :: Tree a -> [al
preorderF :: [Tree a] -> [a]
postorderF :: [Tree a] -> [a]

The structure of the returned results (list or tree) is not the only possible variation of the
depth-first search function. In fact, there are three additional dimensions of possible variation
and generalization: (i) direction: we can also follow predecessors in addition or instead of
successors, (ii) result: we can return other data than just the visited nodes, and (iii) start:
we can fix the initial list of nodes to be the nodes of the graph to be traversed. Altogether

13

we obtain 32 variations of depth-first search. The names of all these functions are given by
the following small grammar:

dfs-fun — [dir]dfstruct[With][’]
dir — x|ul|r
struct — s|f

The meaning of any such function can be derived from the effect of the given parameters:

dir

X

The functions are parameterized by a function of type Context a b
-> [Node] that determines in each step the list of nodes to be visited
next. For plain dfs this is just the function suc’.

The nodes to be visited next are successors and predecessors. This means
that these versions of depth-first search ignore the direction of the edges
and are therefore also called unordered depth-first search. udfs can be
expressed as an instance of xdfs with the direction parameter neighbors’.
The nodes to be visited next are the predecessors instead of the successors.
Thus, these depth-first search functions move in the opposite direction,
which has the same effect as performing “normal” depth-first search on
the reversed graph. We call this option reverse depth-first search, and
rdfs can be expressed as an instance of xdfs with the direction parameter
pre’.

(No Prefix) This is the default case in which functions just follow suc-
cessors. dfs can be expressed as an instance of xdfs with the direction
parameter suc’.

struct

S

The result of these functions are lists: for the “With” versions the list
elements are computed from the contexts by a parameter function, and
for the “normal” versions, these are just nodes. In other words, dfs can
be expressed as dfsWith nodes’.

The result of these functions are trees (or, more precisely, forests). Again,
the “With” functions extract the elements put into the trees from the con-
texts by a parameter function, whereas the “normal” functions simply take
the current node. This means, dff can be expressed as dffWith nodes’.

With

The objects to be put into lists or trees are computed from the visited
contexts by a parameter function of type Context a b -> c¢ (abbreviated
as the type CFun). Function names without the “With” suffix just take the
nodes from the context.

To ensure that a graph is always completely explored (without caring for
its connectedness) we can call functions like dfs just with the list of all
nodes of the graph. Therefore we have included primed versions of depth-
first search functions that do not have a node list as a parameter and
instead take the list of nodes of their graph argument. In the default case,
node lists have to be provided explicitly.

14 4 DEPTH FIRST SEARCH

We have not included all 32 functions in the library, but only the ones that seem to be most
useful.

type CFun a b ¢ = Context a b -> ¢

xdfsWith :: CFun a b [Node]l -> CFun a b ¢ -> [Node] -> Graph a b -> [c]
xdffWith :: CFun a b [Node] -> CFun a b ¢ -> [Node] -> Graph a b -> [Tree c]
dfsWith :: CFun a b ¢ -> [Node] -> Graph a b -> [c]

dffWith :: CFun a b ¢ -> [Node] -> Graph a b -> [Tree c]

dfsWith’ :: CFun a b ¢ -> Graph a b -> [c]

dffWith’ :: CFun a b ¢ -> Graph a b -> [Tree c]

dfs :: [Node]l -> Graph a b -> [Node]

dff :: [Node]l -> Graph a b -> [Tree Node]

dfs’ :: Graph a b -> [Node]

daff’ :: Graph a b -> [Tree Node]

udfs :: [Node]l -> Graph a b -> [Nodel

udff :: [Node]l -> Graph a b -> [Tree Node]

rdfs :: [Node]l -> Graph a b -> [Nodel

rdff :: [Node]l -> Graph a b -> [Tree Node]

udfs’ :: Graph a b -> [Node]

udff’ :: Graph a b -> [Tree Nodel

rdfs’ :: Graph a b -> [Node]

rdff’ :: Graph a b -> [Tree Node]

There are two ways of generalizing xdfsWith and xdffWith further: first, we can abstract
from the type constructor (list or forest) that capture the resulting values, and second, the
intermediate results computed for all, say, successors, of a node are currently collected in
a list, and this can be generalized into an arbitrary function to combine the values. Both
of these generalizations lead directly to the definition of the function gfold, see Section 3.
Hence, all the shown depth-first search functions (and more) can be expressed as an instance
of gfold.

Finally, there are several graph problems that can be solved with the help of the above
depth-first search functions: components computes the (simply) connected components as
a list of node lists, noComponents says how many components a graph consists of. If this
number is 1, isConnected yields True. The function topsort computes a topologically
sorted list of nodes (for acyclic graphs), scc computes the strongly connected components,
and the function reachable determines all nodes that are reachable in a graph from a specific
node.

components :: Graph a b -> [[Nodell
noComponents :: Graph a b -> Int
isConnected :: Graph a b -> Bool
topsort :: Graph a b -> [Node]
scc :: Graph a b -> [[Node]]

reachable :: Node -> Graph a b -> [Node]

15

5 Breadth-First Search

Breadth-first search essentially means visiting siblings before successors. This has the effect
to first visit all nodes of a certain distance (measured in number of edges) from the start node
before visiting nodes that are further away. This property is exploited by the shortest path
function esp given below that is based on breadth-first search. This and all other functions
can be found in the module BFS.

Similar to depth-first search we have variations of breadth-first search along different
dimensions. Usually, a breadth-first search takes a single node as a parameter, and then
explores the graph. In some applications, however, (for example, locating nearest facilities
[10]) it is required that the search starts from several nodes, so to say “in parallel”. Functions
that have a suffix “n” account for this and take as a parameter a list of start nodes. The
second dimension is, again, the use of “With” suffixes to enable to feed a parameter function
that extracts the interesting information from the visited contexts.

Now we have four versions of breadth-first search for computing just nodes (for example,
bfs) or other information (for example, bfsWith) and starting from a single node or from a
list of nodes (for example, bfsn). The functions level and leveln compute the breadth-first
list in which the nodes are paired with their level, that is, with their distance to the start
node(s). The functions bfe and bfen return the list of traversed edges of a breadth-first
search. Note that bfen requires a list of edges whereas bfe just takes one node. Finally,
the function bft computes a breadth-first spanning tree, and the function esp computes the
shortest path between two nodes where the length of a path is given by the number of edge
in it.

bfs Node -> Graph a b -> [Node]

bfsn [Node] -> Graph a b -> [Nodel

bfsWith (Context a b -> ¢) -> Node -> Graph a b -> [c]
bfsnWith :: (Context a b -> c¢) -> [Node]l -> Graph a b -> [c]
level Node =-> Graph a b -> [(Node,Int)]

leveln [(Node,Int)] -> Graph a b -> [(Node,Int)]

bfe Node -> Graph a b -> [Edge]

bfen [Edge] -> Graph a b -> [Edge]

bft :: Node -> Graph a b -> RTree

esp :: Node -> Node -> Graph a b -> Path

It remains to explained how the type RTree is defined. Since the definition of esp is based
on such a tree (computed by bft) we consider in some detail how shortest paths can be
computed to motivate the definition of RTree.

To build a breadth-first spanning tree we have to keep more information than just the
order of nodes. Before we present an algorithm for this we make two observations: first, it is
quite difficult to efficiently build a breadth-first spanning tree represented, for example, as
a Tree Node value as was done, for example, by dff. The problem is that the expressions
denoting such trees have to be built bottom-up whereas the recursion in bfs delivers nodes
in a way that is per se suited for top-down construction. Second, such a representation is

BFS.hs

RootPath.hs

16 5 BREADTH-FIRST SEARCH

not so important anyhow because finding a shortest path with the help of a breadth-first
spanning tree is supported by inward directed trees, that is, trees whose edges point from
the successors toward predecessors: finding a shortest path from node s to node ¢ can be
achieved by (i) computing the breadth-first spanning tree rooted at s, (ii) locating node ¢
in it, and (iii) following the edges from ¢ to the root. Then the reverse list of traversed
nodes/edges gives the shortest path.

Now an inward directed tree can be represented simply as a mapping with domain and
range of type Node mapping nodes to their predecessors. Since such a mapping is built
incrementally either during breadth-first search or after it using a list of traversed edges, we
cannot use a monolithic array for implementing it. In fact, the array construct proposed in
[13] could be used to build up such a tree, but this requires to write the whole algorithm
serving the array construction, and this destroys the simplicity and elegance of the functional
bfs algorithm. Instead we can use a binary search tree, but this adds a logarithmic factor on
each operation for (i) building up the spanning tree and (ii) for reconstructing the shortest
path after that.

The latter problem can be addressed by not just mapping nodes to their predecessor, but
to the whole path to the root. This does not really make the implementation more complex:
to insert u as a predecessor of v instead of just inserting u with key v into the tree, we first
locate the root path already stored at u, say p, and then insert u:p with key v into the tree. In
this way we only need to locate ¢ in the inward directed tree, and we can just reverse the list
of stored nodes to obtain the shortest path from s to t. Note that this representation causes
only minimal space overhead: since common prefixes of paths are shared, this representation
is linear in the number of stored nodes. However, still the complexity of computing the
breadth-first spanning tree and thus also for computing shortest paths is O(nlogn + e).

Now a further improvement is to represent a breadth-first spanning tree by a list (instead
of a tree) of paths from each node to the root. We call these kind of trees root path trees.
Again, to have a linear space requirement the paths should share common prefixes. This can
be achieved quite easily by keeping these paths in the queue used by breadth-first search.

Now the algorithm for finding the shortest path between two nodes s and ¢ first computes
the breadth-first spanning tree rooted at s. This spanning tree is represented as a list of root
paths, and from these the first one that has ¢ as a first element is extracted. This root path
has then only to be reversed to obtain the shortest path.

Hence, we have tho following definitions for root path trees, which can be found in the
module RootPath. The type LRTree is the type of labeled root path trees, these are root path
trees in which all nodes of all root paths are labeled. These kinds of trees will be needed in
Section 6. The function getPath finds a path from the root of the tree to the given node,
and the function getLPath finds a labeled path in a labeled root path tree. The function
getLabel yields the distance of a node (measured in accumulated edge costs) from the root.

type RTree = [Pathl]

type LRTree a = [LPath a]

getPath :: Node -> RTree -> Path
getLPath :: Node -> LRTree a -> LPath a

getDistance :: Node -> LRTree a -> a

17

6 Shortest Paths

Very closely related to the shortest path algorithm of the preceding section is Dijkstra’s
algorithm for computing shortest paths in graphs with positive edge labels. It is defined in
the module SP. The main difference is that the length of a path is now defined to be the sum
of its edge labels and that a shortest path between two nodes is accordingly one that has a
minimum path length. The function spTree computes a shortest path tree, and the function
sp determines a shortest path between two nodes. This is an unlabeled path, and to obtain
the length of a shortest path the function spLength can be used.

spTree :: Real b => Node -> Graph a b -> LRTree b
spLength :: Real b => Node -> Node -> Graph a b -> b
sp :: Real b => Node -> Node -> Graph a b -> Path

We have not included a possible generalization of these functions that take as an additional
parameter a function, say, £, on edge labels that delivers values according to which shortest
paths are to be determined because the same behavior can be achieved by first mapping £
to all edges (with emap) and then using the above functions.

7 Graph Voronoi Diagram

The Voronoi Diagram with respect to a set of points K = {vi,...,v;} (in the Euclidean
plane), called Voronoi points, is a subdivision of the plane into regions Ry, ..., Ry, called
Voronoi regions, such that for any point p € R; the distance to v; is not larger than to any
other v € K. The concept of Voronoi Diagram extends straightforwardly to graphs as follows
[10]: K is given by a set of nodes and determines a set of Voronoi sets {Ny,..., Ny} such
that (i) the shortest path from a node v € N; to v; € K is not longer than to any other
node in K and (ii) Ny contains all nodes for which all nodes K are unreachable. The node
partition {Ny,..., Ny} is called the (inward) graph Voronoi Diagram. This means that the
inward Voronoi diagram is based on the paths which lead foward the Voronoi nodes, and
there is a dual definition of the outward graph Voronoi Diagram that is based on shortest
paths from Voronoi nodes to nodes of the Voronoi sets.

One important application of graph Voronoi diagrams is the location of nearest facilities.
Assume that the graph models a transportation network and that K is a set of nodes where
facilities, such as, fire stations, hospitals, post offices, or shopping malls, are located. Now
the nearest facility of a query point v is that Voronoi node to which the shortest path from
v has minimal cost. The following information may be of interest: “Which Voronoi node v;
is nearest to v 77, “How far is v; from v 7”7, or “What is the shortest path from v to v; 7”.
As an example suppose an accident happens at node v. Then we seek the shortest path to
the nearest hospital.

We can reuse the type LRTree to represent graph Voronoi Diagrams. The difference to a
shortest path tree is that it has, in general, more than one root, in other words, it is actually
a kind of shortest path forest. The operations provided by module GVD are the following: the
function gvdIn computes the inward graph Voronoi Diagram, whereas the function gvdOut
computes the outward graph Voronoi Diagram. The function nearestNode computes the

SP.hs

GVD.hs

18

6

8 MINIMUM SPANNING TREE

8

Figure 2: Directed graph with Voronoi nodes displayed in green.

nearest Voronoi node for a given node, the function nearestDistance yields the length of
the shortest path to the nearest Voronoi node (for inward Voronoi Diagrams) and the length
of the shortest path from the nearest Voronoi node (for outward Voronoi Diagrams), and
the function nearestPath returns the shortest path to the nearest Voronoi node (for inward
Voronoi Diagrams) and the shortest path from the nearest Voronoi node (for outward Voronoi

Diagrams).

type Voronoi a

gvdIn
gvdOut
voronoiSet

nearestNode ::
nearestDist ::
nearestPath ::

:: Real
:: Real
:: Real

[Node] -> Graph
[Node]l -> Graph
Node -> Voronoi
Node -> Voronoi
Node -> Voronoi

= LRTree a
b =>
b =>
b =>
Real b =>
Real b =>
Real b =>

Node -> Voronoi

a b -> Voronoi b
a b -> Voronoi b
b -> [Nodel

b -> Maybe Node
b -> Maybe b

b -> Maybe Path

As an example consider the graph vor shown in Figure 2. When computing the inward and
outward graph Voronoi Diagram for the Voronoi nodes 4 and 5, we get, for example:

GVD> voronoiSet 4 (gvdIn [4,5] vor)

[4,1,2]

GVD> voronoiSet 5 (gvdIn [4,5] vor)

[5,6]

GVD> voronoiSet 4 (gvdOut [4,5] vor)

[4,6,7,2]

8 Minimum Spanning Tree

A minimum spanning tree is a spanning tree of a labeled undirected graph of minimal total
edge length. Hence, in our context of directed graphs the presented functions work, in

19

general, only for directed graphs that properly represent undirected graphs. Remember that
we can easily convert any directed graph into one representing an undirected one with the
function undir described in Section 3.1.

We have to decide about the representation of the spanning tree, and this decision de-
pends on the context in which the spanning tree is used. One application can be found
in telecommunication: some telephone companies calculate the costs of phone calls by the
length of a path between two nodes in a precomputed minimum spanning tree. This is sup-
ported again by root path trees. Now the following functions are available in the module MST:
the function msTreeAt for computing a minimum spanning tree that is rooted at a particular
node and the function msTree that computes a minimum spanning tree for an arbitrarily
chosen root. Finally, the function msPath finds a path between two nodes in a minimum
spanning tree.

msTreeAt :: Real b => Node -> Graph a b -> LRTree b
msTree :: Real b => Graph a b -> LRTree b
msPath :: Real b => LRTree b -> Node -> Node -> Path

9 Maximum Independent Node Sets

An independent node set is a subset of the nodes of a graph such that no two nodes of this
set are connected by an edge. A maximum independent node set is an independent node set
of maximum cardinality. The maximum independent node set is in a sense the dual of the
maximum clique problem which asks for a maximal set of nodes such that each pair of nodes
is connected by an edge. This problem was included here because the implementation makes
use of that fact that inductive graphs are persistent data structures [18].

In the module Indep we have just one function indep to compute for a graph a maximum
independent node set.

indep :: Graph a b -> [Node]

MST.hs

Indep.hs

20 REFERENCES
References
[1] A. Aasa, S. Holstréom, and C. Nilsson. An Efficiency Comparison of Some Representa-

[2]

3]

[12]

[13]

[14]

tions of Purely Functional Arrays. BIT, 28(3):490-503, 1988.

P. Briggs and L. Torczon. An Efficient Representation For Sparse Sets. ACM Letters
on Programming Languages, 2(4):59-69, 1993.

F. W. Burton and H.-K. Yang. Manipulating Multilinked Data Structures in a Pure
Functional Language. Software — Practice and Ezperience, 20(11):1167-1185, 1990.

P. F. Dietz. Fully Persistent Arrays. In Workshop on Algorithms and Data Structures,
LNCS 382, pages 67-74, 1989.

M. Erwig. Graph Algorithms = Iteration + Data Structures? The Structure of Graph
Algorithms and a Corresponding Style of Programming. In 18th Int. Workshop on
Graph- Theoretic Concepts in Computer Science, LNCS 657, pages 277-292, 1992.

M. Erwig. Fully Persistent Graphs — Which One to Choose? In 9th Int. Workshop on
Implementation of Functional Languages, LNCS 1467, pages 123-140, 1997.

M. Erwig. Functional Programming with Graphs. In 2nd ACM Int. Conf. on Functional
Programming, pages 52—65, 1997.

M. Erwig. A Functional Homage to Graph Reduction. Technical Report 239, FernUni-
versitat Hagen, 1998.

M. Erwig. Abstract Syntax and Semantics of Visual Languages. Journal of Visual
Languages and Computing, 9(5):461-483, 1998.

M. Erwig. The Graph Voronoi Diagram with Applications. Networks, 2000. To appear.

L. Fegaras and T. Sheard. Revisiting Catamorphisms over Datatypes with Embedded
Functions. In 23rd ACM Symp. on Principles of Programming Languages, pages 284—
294, 1996.

J. Gibbons. An Initial Algebra Approach to Directed Acyclic Graphs. In Mathematics
of Program Construction, LNCS 947, pages 282-303, 1995.

T. Johnsson. Efficient Graph Algorithms Using Lazy Monolithic Arrays. Journal of
Functional Programming, 8(4):323-333, 1998.

Y. Kashiwagi and D. Wise. Graph Algorithms in a Lazy Functional Programming
Language. In 4th Int. Symp. on Lucid and Intensional Programing, pages 35-46, 1991.

D. J. King. Functional Programming and Graph Algorithms. PhD thesis, University of
Glasgow, 1996.

D. J. King and J. Launchbury. Structuring Depth-First Search Algorithms in Haskell.
In 22nd ACM Symp. on Principles of Programming Languages, pages 344-354, 1995.

REFERENCES 21

[17] J. Launchbury. Graph Algorithms with a Functional Flavour. In Advanced Functional
Programming, LNCS 925, pages 308-331, 1995.

[18] C. Okasaki. Purely Functional Data Structures. Cambridge University Press, Cambridge,
UK, 1998.

[19] M. E. O'Neill and F. W. Burton. A New Method for Functional Arrays. Journal of
Functional Programming, 7(5):487-513, 1997.

[20] S. L. Peyton Jones, J. Hughes et al. Report on the Programming Language Haskell 98.
1999.

22 APPENDIX A

Appendix A: Implementation Aspects

The implementation of inductive graphs has to support the following operations for con-
structing and decomposing graphs:

Construction Decomposition

Empty graph (empty) | Test for empty graph (isEmpty)
Add context (embed) | Extract arbitrary context (matchAny)
Extract specific context (match)

In particular, graphs have to be fully persistent, that is, updates on a graph must leave
previous versions intact.

Graph Representations and Persistence

One idea is to use a plain term representation. This is attractive because it offers persistence
for free. However, a closer look rules out this option because the implementation of match
is hopelessly inefficient, and even the implementation of embed is inefficient since it has to
ensure the existence of the predecessors and successors and the non-existence of the newly
inserted node, and testing this takes at least linear time with respect to the size of the graph.

Considering the imperative world, there are two main representations that both have
their strengths and drawbacks: adjacency lists and incidence matrices. Except for special
applications, the adjacency lists graph representation is generally favored over the incidence
matrix because (i) its space requirement is linear in the graph size compared to 2(n?) space
for the matrix and (ii) adjacency lists offer O(1) access time to the successors of an arbitrary
node in contrast to £2(n) time needed to scan a complete row in an incidence matrix.

We have therefore concentrated on two alternatives for making adjacency lists persistent:
the first representation uses a variant of the version tree implementation of functional arrays,!
and the second representation stores successor and predecessor lists in a balanced binary
search tree. The version tree implementation is based on the proposal [1] and records changes
to the original array in an inward directed tree of (index, value) pairs that has the original
array at its root.? Each different array version is represented by a pointer to a node in the
version tree, and the nodes along the path to the root mask older definitions in the original
array (and the tree). Adding a new node to the version tree can be done in constant time,
but index access might take up to u steps where u denotes the number of updates to the
array. We have extended this basic structure by an additional cache array and a further
array carrying time stamps for nodes. Moreover, to support some specialized operations
efficiently, this structure is supplemented by a two-array implementation of node partitions
to keep track of inserted and deleted nodes.

!Note that the current version of FGL/Haskell does not contain the version tree implementation because

it needs destructive array updates. In contrast, FGL/ML does contain a version tree implementation.
?In fact, there are more sophisticated functional array implementations available, for example, [4] and [19].

However, the implementation requires considerable effort, and benchmarks have shown that even the simpler
version tree implementation does not hold in practice what its asymptotic complexity promises [6].

Optimizing the Version Tree Array Representation 23

Optimizing the Version Tree Array Representation

In the version tree representation the implementation of match becomes quite inefficient since
the deletion of a context (p,v,1,s) requires the removal of v from each of its predecessor’s
successor list and from each of its successor’s predecessor list. When ¢ denotes the size of the
context (c ~ length p+ length s), this means a runtime of O(uc?) (recall that u gives the
total number of previous updates to the graph). By keeping the predecessors and successor
in balanced binary search trees the effort can be reduced to O(uclogc).

Avoiding Node Deletion. To avoid these costly deletion activities we equip each node
in the graph with a positive integer, and this integer is negated once the node is deleted.
Positive node stamps are also put into successor/predecessor lists. Now when a node context
is deleted, we need not remove v from all referencing successor and predecessor lists because
when a successor list 1 (of a node w) is accessed that contains v, all elements that have
non-matching stamps are ignored, that is, v will not be returned as a successor because it
has a negative node stamp whereas 1 contains v with a positive stamp. When v is re-inserted
into the graph later, we make the stamp of v positive again and increase it by 1, and we take
this new stamp over to all newly added predecessors and successors. Now if w is not among
the new predecessors, the old entry in 1 is still correctly ignored when 1 is accessed because
its value smaller than v’s current stamp.

One might wonder whether the garbage nodes in successor and predecessor lists (that is,
invalid and unused references to deleted nodes) are a source of inefficiency. In practice, this
does not seem to be a problem. For example, in the case of graph reduction, where graphs
are heavily updated, only 25-30% of nodes in successor and predecessor lists are filtered out
due to invalid stamps.

Avoiding Version Tree Lookups. We add an imperative cache array to the leftmost
node of the version tree. This means that the array represented by that node is, in fact,
duplicated. Since index access within this array is possible in constant time, algorithms
that use the functional array in a single-threaded way have the same complexity as in the
imperative case, since the version tree degenerates to a left spine path with the leaf node
offering constant time access during the whole algorithm.

There is a subtlety in this implementation having just one cache array: if a functional
array is used a second time, the cache has already been consumed for the previous compu-
tation and cannot be used again. This gives a surprising time behavior: the user executes a
program on a functional array, and it runs quite fast. However, running the same program
again results, in general, in much larger execution times since all access now goes through the
version tree. Therefore, we create in our implementation a new cache for each new version
derived from the original array.

Support for Special Operations. The version tree implementation described so far is
surprisingly inefficient for the operations isEmpty and matchAny. Testing for the empty
graph can be easily supported by extending the graph representation to include the number
of nodes in the graph. More difficulties presents the operation matchAny for which we have,
in general, to scan the whole stamp array to find a valid, that is, non-deleted, node. Note

24 APPENDIX A

that even a simple imperative array implementation requires, in general, linear time for
this operations by scanning the whole array. (This is not surprising since the question of
graph updates is completely ignored anyway in almost all descriptions of imperative graph
representations.)

To account for matchAny we keep for each graph a partition of inserted nodes (that is,
nodes existent in the graph) and deleted nodes: when a node is deleted (decomposed), it is
moved from the inserted-set into the deleted-set, when a node is inserted into the graph, it is
moved the other way. The node partition is realized by two arrays, index and elem, and an
integer k giving the number of existent nodes, or, equivalently, pointing to the last existing
node. The array elem stores all existent nodes in its left part and all deleted nodes in its
right part, and indez gives for each node its position in the elem array. A node v is existent
if indez[v] < k, likewise, it is deleted if indez[v] > k. Inserting a new node v means to move
it from the deleted-set into the inserted-set. This is done by exchanging v’s position in elem
with the node stored at elem[k + 1] (that is, the first deleted node) followed by increasing k
by 1. The entries in index must be updated accordingly. To delete node v, first swap v and
elem[k], and then decrease k by 1. All this is possible in constant time.

Now all the above mentioned graph operations can be implemented to work in constant
time: matchAny can be realized by calling match with elem[1], and isEmpty is true if £ = 0.
Moreover, some other useful graph operations are efficiently supported by the node partition:
a list of ¢ fresh nodes, that is, nodes that are not contained in a graph, is simply given by
[elem[k +1],..., elem[k + i]] (this operation is needed, for example, to extend a graph whose
construction history is not known), k& gives the number of nodes in the graph, and all nodes
can be reported in time O(k) which might be much less than the size of the array. The
described implementation of node partitions is an extension of the sparse set technique
proposed in [2]. The drawback of the described extension is that keeping the partition
information requires additional space and causes some overhead. Moreover, arrays do not
become truly dynamic since they can neither grow nor shrink.

Binary Search Tree Representation

A binary search tree can be well used as a functional array implementation, and this offers
an immediate realization of functional graphs: a graph is represented by a pair (¢, m) where ¢
is a tree of pairs (node, (predecessors, label, successors)) and m is the largest node occurring
in t. Note that m is used to support the creation of new nodes. Keeping the largest node
value used in the graph, this is possible in O(1) time.

However, inserting and deleting a node context (p,v,1,s) requires considerable effort:
concerning insertion we have to insert the context itself (which takes O(logn) steps when n
nodes are in the graph), and we have to insert v as a successor (predecessor) for each node
in p (s) (which takes O(clogn) steps). Hence, insertion runs in O(clogn) time which can be
as large as O(nlogn) for dense graphs. Context deletion takes even more time since we have
to remove v from the successor (predecessor) list for each element of p (s), which requires
searching these lists for v. Altogether deletion runs in O(c?logn) time or O(clogclogn) if
predecessors/successors are stored as search trees. In dense graphs, this gives a complexity
of O(n?logn) and O(nlog?n).

Although the asymptotic behavior of the search tree representation is clearly worse (at

APPENDIX B 25

least for single-threaded graph uses) than the array implementation, it performs very well in
practice (see [6]), maybe because it is much simpler and does not require so many tunings.
It also has the great advantage that it is a truly dynamic structure that supports unbounded
growth of graphs. A further problem with the array implementation is that in order to be
implemented in Haskell it needs to exploit unsafe features because operations like constant
time array updates have to be encapsulated in a monad, and this monad has to extend as far
as access to the array is made, that is, the monad would eventually show up in the algorithms
and cannot be hidden in the graph implementation which is very bad and would completely
destroy the functional flavor of the algorithms using inductive graphs. The version tree
implementation is therefore only contained in the ML version of FGL, the Haskell version
currently provides only the search tree representation.

Appendix B: Further Reading

There exist quite different proposals for how to implement graphs and graph algorithms in
functional programming languages. Here we collect some links for further study of the topic.

A straightforward approach proposed in [3] is to pass the state used by graph algorithms
through function calls where the state itself is represented by a functional array. This is
certainly a standard way of implementing any imperative algorithm in a functional language.
Burton and Yang show how classical algorithms can be translated into a lazy functional
language, but no particular use of functional languages is made in the design of the algorithms
themselves.

In contrast, in [14] algorithms are described as fixed points of recursive equations which
essentially relies on lazy evaluation. This approach exploits and relies on features of lazy
functional languages. However, the algorithms become quite complex and are rather diffi-
cult to comprehend. As with [3] this approach does not achieve the asymptotic runtime of
imperative algorithms.

A kind of combinator approach was presented in [5]: we have identified some classes of
graph algorithms and have introduced a few corresponding predefined operators. A graph
algorithm is realized by selecting an operator and providing it with appropriate parameter
functions and data structures. We believe that the approach reflects the structure of graph
algorithms very well. However, like in the previous two approaches there is not much potential
for formal program manipulation. Another drawback is that the combinator approach is
limited in expressiveness.

The proposal of [16] is concerned only with depth-first search, and the focus is on a
generated data structure, the depth-first spanning forest, instead of the underlying graph
algorithm. This facilitates formal reasoning, in particular, the formal development of many
algorithms based on depth-first search becomes possible. The depth-first search function
itself is realized nicely in a generate-and-prune manner. Monads are used to implement the
state maintained during the search (that is, the vertices visited) to achieve linear running
time. At this point the approach is stuck with the imperative programming style. Although
encapsulated and restricted to a single point, it comes up in the process of program fusion
where transformations become quite complex when functions are moved across state trans-
formers, see [17] where it is demonstrated how phase fusion can be applied to eliminate
intermediate results of some of these algorithms. King [15] defines in his thesis many more

26 APPENDIX B

algorithms, but as with depth-first search, the defined functions are mainly implementations
of imperative algorithms.

Fegaras and Sheard [11] investigate a generalization of fold operations to data types with
embedded functions. As one motivating example they show how to model graphs. However,
that approach is somewhat limited (it is not clear how to define, for example, a function
for reversing all edges in a graph) and it is highly inefficient since direct access to a node
requires, in general, traversal of the whole graph.

Also related is the work of Gibbons [12] who considers the definition of graph fold op-
erations within an algebraic framework. But he deals only with acyclic graphs, and an
implementation is not discussed, so that his approach is actually not usable.

In contrast to the monolithic view of graphs which is so dominating that it is even
adopted by most functional approaches, we suggest to view graphs inductively, as a data
type defined by two constructors, much like lists or trees. This view was first presented
in [7] where the focus was to define several kinds of graph fold operations and to identify
laws for them that can be used for program transformation. Also a first implementation
of functional graphs was provided. In [6] we have extended the implementation in several
ways and have compared different representation schemes by performing some benchmarks.
The inductive graph view has also applications that go beyond the realization of functional
graph algorithms, for example, inductive graphs have facilitated the denotational semantics
definition of visual languages [9]. Another application, which has an educational pretension,
is the purely functional description of graph reduction [8].

Index

& (function), 4

Adj (type), 4
adjacency, 4

Basic (module), 9

bfe (function), 15

bfen (function), 15

BFS (module), 15

bfs (function), 15

bfsn (function), 15
bfsWith (function), 15
bft (function), 15

binary search tree, 24

Br (constructor), 11, 12
breadth aggregation, 11
breadth-first search, 15-16
breadth-first spanning tree, 15

CFun (type), 13, 14
component
connected, 14
strongly connected, 14
components (function), 14
Context (type), 3
context, 3
context (function), 9
contextP (function), 9

Decomp (type), 4
deg (function), 7
deg’ (function), 7
delEdge (function), 9
delEdges (function), 9
delNode (function), 9
delNodes (function), 9
depth aggregation, 10
depth-first forest, 12
depth-first order, 12
depth-first search, 12-14
reverse, 13
unordered, 13
depth-first spanning tree, 11, 12
dff (function), 11-15

dff’ (function), 14
dffWith (function), 13, 14
dffWith’ (function), 14
DFS (module), 12

dfs (function), 12-14
dfs’ (function), 14
dfsWith (function), 13, 14
dfsWith’ (function), 14
directed graph, 3

Edge (type), 3

edge, 3

edges (function), 6
emap (function), 17
embed (function), 4, 22
empty (function), 4, 22
esp (function), 15

forest, 12, 13
depth-first, 12
shortest path, 17

GDecomp (type), 4
getLabel (function), 16
getLPath (function), 16
getPath (function), 16
gfold (function), 10, 11, 14
gmap (function), 10-12
Graph (module), 3, 6
graph

directed, 3

labeled, 3

undirected, 3, 18

unlabeled, 3
graph Voronoi Diagram, 17

inward, 17

outward, 17
GraphData (module), 4, 6
grev (function), 10, 11
gsel (function), 10, 12
GVD (module), 17
gvdIn (function), 17
gvdOut (function), 17

27

28

indeg (function), 7

indeg’ (function), 7

Indep (module), 19

indep (function), 19
independent node set, 19
inn (function), 7

inn’ (function), 7

insEdge (function), 6
insEdges (function), 6
insNode (function), 6
insNodes (function), 6
inward directed tree, 16
inward graph Voronoi Diagram, 17
isConnected (function), 14
isEmpty (function), 6, 22-24

lab’ (function), 7
labEdges (function), 6
labeled graph, 3
labeled root path tree, 16
labNode’ (function), 7
labNodes (function), 6
LEdge (type), 3

level (function), 15
leveln (function), 15
LNode (type), 3

loop, 8

LPath (type), 3, 16
LRTree (type), 16, 17

match (function), 7, 22-24
matchAny (function), 9, 11, 12, 22-24
matchP (function), 9

matchSome (function), 9

matchThe (function), 9

maximum independent node set, 19
MContext (type), 4

minimum spanning tree, 18
mkGraph (function), 6

mkUGraph (function), 6

msPath (function), 19

MST (module), 19

msTree (function), 19

msTreeAt (function), 19
multi-graph, 3

nearest facility, 17
nearestDistance (function), 18
nearestNode (function), 17
nearestPath (function), 18
neighbors (function), 7
neighbors’ (function), 7, 13
newNodes (function), 6
noComponents (function), 14
Node (type), 3

node, 3

node partition, 17

node’, 11

node’ (function), 7

nodes (function), 6, 12
nodes’ (function), 13
noNodes (function), 6

out (function), 7

out’ (function), 7

outdeg (function), 7

outdeg’ (function), 7

outward graph Voronoi Diagram, 17

Path (type), 3, 16
path, 3

root, 16

shortest, 17
persistence, 19, 22
postorder, 12
postorder (function), 12
postorderF (function), 12
pre (function), 7
pre’ (function), 7, 13
preorder, 12
preorder (function), 12
preorderF (function), 12

rdff (function), 14
rdff’ (function), 14
rdfs (function), 13, 14
rdfs’ (function), 14
reachable (function), 14
root path tree, 16
RootPath (module), 16
RoseTree (module), 12
RTree (type), 15, 16

INDEX

INDEX

scc (function), 14
shortest path, 15, 17
shortest path forest, 17
shortest path tree, 17
SP (module), 17
sp (function), 17
spanning tree
breadth-first, 15
depth-first, 11, 12
spLength (function), 17
spTree (function), 17
star (function), 6
strongly connected components, 12
suc (function), 7
suc’ (function), 7, 10, 11, 13

topological sorting, 12
topsort (function), 14
Tree (data type), 12, 15
tree
inward directed, 16
labeled root path, 16
minimum spanning, 18
root path, 16
shortest path, 17
spanning
breadth-first, 15
depth-first, 11, 12
minimum, 18

ucycle (function), 6
udff (function), 14
udff’ (function), 14
udfs (function), 13, 14
udfs’ (function), 14
UEdge (type), 3

ufold (function), 10, 12
undir (function), 10, 12, 19
undirected graph, 3, 18
unlab (function), 10, 12
unlabeled graph, 3
UNode (type), 3

UPath (type), 3

version tree, 22, 23
Voronoi Diagram, 17

Voronoi points, 17
Voronoi regions, 17
Voronoi set, 17

xdffWith (function), 14
xdfsWith (function), 14

29

